Colour discrimination in post-COVID-19 observers assessed by the Farnsworth-Munsell 100-Hue test
PDF (Английский)
PDF

Ключевые слова

colour vision
colour perception
chromatic discrimination
COVID-19
post-COVID syndrome
Farnsworth-Munsell 100-Hue test
Type III acquired colour vision deficiency

Аннотация

Introduction. Post-COVID-19, various ophthalmological symptoms and visual impairments have been reported. We hypothesised that colour vision may be affected too. Methods. We assessed colour discrimination using the Farnsworth-Munsell 100 Hue test (FM-100) in individuals who have had COVID-19 (N = 77; 18–68 years). Results. Total error score (TES) indicated superior colour discrimination in 34 observers. The Vingrys–King-Smith C-index (severity) exceeded the normal cut-off measure in 44 observers. In participants (N = 35) with average TES, the Vingrys–King-Smith analysis revealed subtle colour deficiencies – either a mild tritan defect (‘blue’ or blue-yellow) or moderate defect with a diffuse error pattern. A minor sub-sample manifested poor discrimination (N = 6) or colour vision loss (N = 2), with a tritan or diffuse error pattern. √TES negatively correlated with the post-illness period. In partial error score (√PES), B–Y errors prevailed, regardless of the elapsed post-illness period. Discussion. Overall, the results indicate that about half of those who have recovered from COVID-19 revealed mild Type III acquired colour discrimination loss, characteristic of retinal disorders and vascular disease. Conceivably, coronavirus infection caused hypoperfusion (reduced vascular supply) at the retinal and/or post-retinal stages of the visual system and affected neural mechanisms of colour discrimination. The mild impairment appears to be reversible with a favourite prognosis.

https://doi.org/10.21702/rpj.2024.1.1
PDF (Английский)
PDF

Библиографические ссылки

Gangaputra, S. S., & Patel, S. N. (2020). Ocular symptoms among nonhospitalized patients who underwent COVID-19 testing. Ophthalmology, 127(10), 1425–1427. https://doi.org/10.1016/j.ophtha.2020.06.037

Eleiwa, T. K. Gaier, E. D., Haseeb, A., ElSheikh, R. H., Sallam, A. B., & Elhusseiny, A. M. (2021). Adverse ocular events following COVID 19 vaccination. Inflammation Research, 70, 1005–1009. https://doi.org/10.1007/s00011-021-01506-6

Invernizzi, A., Torre, A., Parrulli, S., Zicarelli, F., Schiuma, M., Colombo, V., Giacomelli, A., Cigada, M., Milazzo, L., Ridolfo, A., Faggion, I., Cordier, L., Oldani, M., Marini, S., Villa, P., Rizzardini, G., Galli, M., Antinori, S., Staurenghi, G., & Meroni, L. (2020). Retinal findings in patients with COVID-19: Results from the SERPICO-19 study. EClinicalMedicine, 27, 100550. https://doi.org/10.1016/j.eclinm.2020.100550

Costa, Í. F., Bonifácio, L. P., Bellissimo-Rodrigues, F., Rocha, E. M., Jorge, R., Bollela, V. R., & Antunes-Foschini, R. (2021). Ocular findings among patients surviving COVID-19. Scientific Reports, 11, 11085. https://doi.org/10.1038/s41598-021-90482-2

Nagy, Z. Z. (2020). Ophthalmic signs and complications of the COVID-19 infection. Developments in Health Sciences, 3(4), 79–82. https://doi.org/10.1556/2066.2021.40001

Yüksel, B., Bıçak, F., Gümüş, F., & Küsbeci, T. (2022). Non-arteritic anterior ischaemic optic neuropathy with progressive macular ganglion cell atrophy due to COVID-19. Neuro-Ophthalmology, 46(2), 104–108. https://doi.org/10.1080/01658107.2021.1909075

Haseeb, A. A., Solyman, O., Abushanab, M. M., Abo Obaia, A. S., & Elhusseiny, A. M. (2022). Ocular complications following vaccination for COVID-19: A one-year retrospective. Vaccines, 10, 342. https://doi.org/10.3390/vaccines10020342

Clarke, K. M., Riga, V., Shirodkar Al., & Meyer, J. (2021). Proning related bilateral anterior ischaemic optic neuropathy in a patient with COVID-19 related acute respiratory distress syndrome. BMC Ophthalmology, 21, 276. https://doi.org/10.1186/s12886-021-02028-9

Giacuzzo, C., Eandi, C. M., & Kawasaki, A. (2022). Bilateral acute macular neuroretinopathy following COVID‐19 infection. Acta Ophthalmologica, 100(2), e611–e612. https://doi.org/10.1111/aos.14913

Nagaratnam, S. A., Ferdi, A. C., Leaney, J., Lee, R. L. K., Hwang, Y. T., & Heard, R. (2022). Acute disseminated encephalomyelitis with bilateral optic neuritis following ChAdOx1COVID 19 vaccination. BMC Neurology, 22, 54. https://doi.org/10.1186/s12883-022-02575-8

Richardson-May, J., Purcaru, E., Campbell, C., Hillier, C., & Parkin, B. (2022). Guillain-Barré Syndrome and unilateral optic neuritis following vaccination for COVID-19: A case report and literature review. Neuro-Ophthalmology, 46(6), 413–419. https://doi.org/10.1080/01658107.2022.2048861

Schneck, M. E., & Haegerstrom-Portnoy, G. (1997). Color vision defect type and spatial vision in the optic neuritis treatment trial. Investigative Ophthalmology & Visual Science, 38, 2278–2289.

Castelo-Branco, M., Faria, P., Forjaz, V., Kozak, L.R., & Azevedo, H. (2004). Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: Correlation with clinical measures. Investigative Ophthalmology & Visual Science, 45(2), 499–505. https://doi.org/10.1167/iovs.03-0815

Bimler, D. L., Paramei, G. V., Feitosa-Santana, C., Oiwa, N. N., & Ventura, D. F. (2014). Saturation-specific pattern of acquired colour vision deficiency in two clinical populations revealed by the method of triads. Color Research and Application, 39(2), 125–135. https://doi.org/10.1002/col.21794

Köllner, H. (1912). Die Störungen des Farbensinnes, ihre klinische Bedeutungen und ihre Diagnose. Karger.

Verriest, G. (1963). Further studies on acquired deficiency of color discrimination. Journal of the Optical Society of America, 53(1), 185–195. https://doi.org/10.1364/JOSA.53.000185

Hart, W. M. Jr. (1987). Acquired dyschromatopsia. Survey of Ophthalmology, 32(1), 10–31. https://doi.org/10.1016/0039-6257(87)90070-1

Simunovic, M. P. (2016). Acquired color vision deficiency. Survey of Ophthalmology, 61(2), 132–155. https://doi.org/10.1016/j.survophthal.2015.11.004

Griber, Y. A., & Paramei, G. V. (2022a). Colour naming of post-COVID participants hints to “darkening” of perceived colour. In Proceedings of the International Colour Association (AIC) Conference “Sensing Colour”, 13th-16th June 2022, Toronto, Canada (pp. 504–508). International Colour Association.

Griber, Y. A., & Paramei, G. V. (2022b). Postkovidnoe cvetovospijatie: Vlijanie Covid-19 na vybor cvetonaimenovanija [Post-COVID color perception: The impact of COVID-19 on color naming]. Russian Psychological Journal, 19(3), 21–40 (in Russian and English). https://doi.org/10.21702/rpj.2022.3.2

Farnsworth, D. (1943). The Farnsworth-Munsell 100-hue and dichotomous tests for color vision. Journal of the Optical Society of America, 33(10), 568–578.

Farnsworth, D. (1957). The Farnsworth-Munsell 100-Hue Test for the Examination of Color Discrimination: Manual. Munsell Color Company.

Lakowski, R. (1969). Theory and practice of colour vision testing: A review. Part 2. British Journal of Industrial Medicine, 26, 265–288. http://dx.doi.org/10.1136/oem.26.4.265

Birch, J. (2001). Diagnosis of defective colour vision (2nd ed.). Butterworth Heinemann.

Dain, S. J. (2004). Clinical colour vision tests. Clinical and Experimental Optometry, 87(4-5), 276–293. https://doi.org/10.1111/j.1444-0938.2004.tb05057.x

Paramei, G. V., & Bimler, D. L. (2019). Color vision testing. In R. Shamey (Ed.), Encyclopedia of Color Science and Technology (2nd ed.). Springer, https://link.springer.com/referenceworkentry/10.1007/978-3-642-27851-8_374-2

Verriest, G., Van Laethem, J., & Uvijls, A. (1982). A new assessment of the normal ranges of the Farnsworth-Munsell 100-Hue test scores. American Journal of Ophthalmology, 93(5), 635–642. https://doi.org/10.1016/s0002-9394(14)77380-5

Knoblauch, K., Saunders, F., Kusuda, M., Hynes, R., Podgor, M. Higgins, K. E., & de Monasterio F. M. (1987). Age and illuminance effects in the Farnsworth-Munsell 100-hue test. Applied Optics, 26(8), 1441–1448. https://doi.org/10.1364/AO.26.001441

Roy, M. S., Podgor, M. J., Collier, B., & Gunkel, R. D. (1991). Color vision and age in a normal North American population. Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 229(2), 139–144. https://doi.org/10.1007/BF00170545

Kinnear, P. R., & Sahraie, A. (2002). New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5-22 and for age decades 30–70. British Journal of Ophthalmology, 86(12), 1408–1411. https://doi.org/10.1136/bjo.86.12.1408

Smith, V. C., Pokorny, J., & Pass, A. S. (1985). Color axis determination on the Farnsworth-Munsell 100-hue test. American Journal of Ophthalmology, 100(1), 176–182. https://doi.org/10.1016/s0002-9394(14)75002-0

François, J., & Verriest, G. (1961). On acquired deficiency of colour vision, with special reference to its detection and classification by means of the tests of Farnsworth. Vision Research, 1(3–4), 201–219 https://doi.org/10.1016/0042-6989(61)90001-3

Birch, J. M., Chisholm, I. A., Kinnear, P., Marre, M., Pinckers, A. J. L. G., Pokorny, J., Smith, V. C., Verriest, G. (1979). Acquired color vision defects. In J. Pokorny, V. C. Smith, G. Verriest, & A. J. L. G. Pinckers (Eds.), Congenital and Acquired Color Vision Defects (pp. 282–284). Grune and Stratton Inc.

Vingrys, A. J., & King-Smith, P. E. (1988). A quantitative scoring technique for panel tests of color vision. Investigative Ophthalmology & Visual Science, 29(1), 50–63.

Ménage, M. J., Papakostopoulos, D., Hart, J. C. D., Papakostopoulos, S., & Gogolitsyn, Yu. (1993). The Farnsworth-Munsell 100 hue test in the first episode of demyelinating optic neuritis. British Journal of Ophthalmology, 77, 68–74. http://dx.doi.org/10.1136/bjo.77.2.68

Gundogan, F. C., Tas, A., Altun, S., Oz, O., Erdem, U., & Sobaci, G. (2013). Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis. Indian Journal of Ophthalmology, 61(3), 100–103. https://doi.org/10.4103/0301-4738.99842

Ao, M., Li, X., Qiu, W., Hou, Zh., Su, J., & Wang, W. (2019). The impact of age-related cataracts on colour perception, postoperative recovery and related spectra derived from test of hue perception. BMC Ophthalmology, 19, 56. https://doi.org/10.1186/s12886-019-1057-6

Barton, F. B., Fong, D. S., & Knatterud, G. L. (2004). Classification of Farnsworth-Munsell 100-hue test results in the early treatment diabetic retinopathy study. American Journal of Ophthalmology, 138(1), 119–124 https://doi.org/10.1016/j.ajo.2004.02.009

Shoji, T., Sakurai, Y., Sato, H., Chihara, E., & Takeuchi, M. (2011). Do type 2 diabetes patients without diabetic retinopathy or subjects with impaired fasting glucose have impaired colour vision? The Okubo Color Study Report. Diabetic Medicine, 28(7), 865–871 https://doi.org/10.1111/j.1464-5491.2011.03290.x

Raman, R., Verma, A., Srinivasan, S., & Bhojwani, D. (2018). Partial reversal of color vision impairment in type 2 diabetes associated with obstructive sleep apnea. GMS Ophthalmology Cases, 8, Doc05. https://doi.org/10.3205/oc000087

Racheva, K., Totev, Ts., Natchev, E., Bocheva, N., Beirne, R., & Zlatkova, M. (2020). Color discrimination assessment in patients with hypothyroidism using the Farnsworth-Munsell 100 hue test. Journal of the Optical Society of America A, 37(4), A18–A25. https://doi.org/10.1364/JOSAA.382390

Racheva, K., Totev, Ts., Natchev, E., Bocheva, N., Beirne, R., & Zlatkova, M. (2023). Elimination of the color discrimination impairment along the blue–yellow axis in patients with hypothyroidism after treatment with levothyroxine as assessed by the Farnsworth–Munsell 100 hue test. Journal of the Optical Society of America A, 40(3), A26–A32 https://doi.org/10.1364/JOSAA.476139

X-Rite. Farnsworth Munsell 100 Hue Test webpage. (2024a). https://www.xrite.com/categories/visual-assessment-tools/fm-100-hue-test

X-Rite. Farnsworth Munsell 100 Hue Scoring Software webpage. (2024b). https://www.xrite.com/categories/visual-assessment-tools/fm-100-hue-scoring-system

Lakowski, R. (1966). A critical evaluation of colour vision tests. British Journal of Physiological Optics, 23(3),186–209.

Dain, S. J., Scase, M. O., & Foster, D. H. (1991). An assessment of the ‘mesopization’ model of blue-yellow colour vision defects. In B. Drum, J. D. Moreland, & A. Serra (Eds.), Colour Vision Deficiencies X, Documenta Ophthalmologica Proceedings Series, 54 (pp. 187–197). Springer. https://doi.org/10.1007/978-94-011-3774-4_23

Woo, G. C., & Lee, M.-h. (2002). Are ethnic differences in the F-M 100 scores related to macular pigmentation? Clinical and Experimental Optometry, 85(6), 372–377. https://doi.org/10.1111/j.1444-0938.2002.tb02388.x

Mäntyjärvi, M. (2001). Normal test scores in the Farnsworth–Munsell 100 hue test. Documenta Ophthalmologica, 102, 73–80. https://doi.org/10.1023/A:1017553532092

Esposito, T. (2019). An adjusted error score calculation for the Farnsworth-Munsell 100 Hue Test. LEUKOS: The Journal of the Illuminating Engineering Society, 15 (2–3), 195–202. https://doi.org/10.1080/15502724.2018.1514265

Kinnear, P. R. (1970). Proposals for scoring and assessing the 100 hue test. Vision Research, 10(5), 423–433. https://doi.org/10.1016/0042-6989(70)90123-9

Knoblauch, K. (1987). On quantifying the bipolarity and axis of the Farnsworth-Munsell 100-hue test. Investigative Ophthalmology & Visual Science, 28(4), 707–710.

Bento-Torres, N. V. O., Rodrigues, A. R., Côrtes, M. I. T., Bonci, D. M. O., Ventura, D. F., & Silveira, L. C. L. (2016). Psychophysical evaluation of congenital colour vision deficiency: Discrimination between protans and deutans using Mollon-Reffin’s ellipses and the Farnsworth-Munsell 100-hue test. PLoS ONE, 11(4), e0152214. https://doi.org/10.1371/journal.pone.0152214

Ward, Jr. J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845

Bassi, C. J., Galanis, J. C., & Hoffman, J. (1993). Comparison of the Farnsworth-Munsell 100-Hue, the Farnsworth D-15, and the L'Anthony D-15 desaturated color tests. Archives of Ophthalmology, 111(5), 639–641. https://doi.org/10.1001/archopht.1993.01090050073032

Laeng, B., Brennen, T., Elden, Å., Paulsen, H. G., Banerjee, A., & Lipton, R. (2007). Latitude-of-birth and season-of-birth effects on human color vision in the Arctic. Vision Research, 47, 1595–1607. https://doi.org/10.1016/j.visres.2007.03.011

Beirne, R. O., McIlreavy, L., & Zlatkova, M. B. (2008). The effect of age-related lens yellowing on Farnsworth-Munsell 100 hue error score. Ophthalmic and Physiological Optics, 28(5), 448–456. https://doi.org/10.1111/j.1475-1313.2008.00593.x

Dain, S. J., Cassimaty, V. T., & Psarakis, D. T. (2004). Differences in FM100-Hue test performance related to iris colour may be due to pupil size as well as presumed amounts of macular pigmentation. Clinical and Experimental Optometry, 87(4–5), 322–325. https://doi.org/10.1111/j.1444-0938.2004.tb05061.x

Mahon, L. E., & Vingrys, A. J. (1995). Scoring the Farnsworth-Munsell 100-Hue for vocational guidance. Optometry and Vision Science, 72(8), 547–551.

Shepherd, A J. (2005). Colour vision in migraine: selective deficits for S-cone discriminations. Cephalalgia, 25(6), 412–423. https://doi.org/10.1111/j.1468-2982.2004.00831.x

Cranwell, M. B., Pearce, B., Loveridge, C., & Hurlbert, A. C. (2015). Performance on the Farnsworth-Munsell 100-Hue Test is significantly related to nonverbal IQ. Investigative Ophthalmology & Visual Science, 56(5), 3171–3178. https://doi.org/10.1167/iovs.14-16094

Pokorny, J., & Smith, V. C. (1986). Eye disease and color defects. Vision Research, 26(9), 1573–1584. https://doi.org/10.1016/0042-6989(86)90176-8

Hardy, J. L., Frederick, C. M., Kay, P., & Werner, J. S. (2005). Color naming, lens aging, and grue: What the optics of the aging eye can teach us about color language. Psychological Science, 16(4), 321–327. https://doi.org/10.1111/j.0956-7976.2005.01534.x

Santovito, L. S., & Pinna, G. (2021). Acute reduction of visual acuity and visual field after Pfizer BioNTech COVID 19 vaccine 2nd dose: a case report. Inflammation Research, 70, 931–933. https://doi.org/10.1007/s00011-021-01476-9

Smith, V. C., Ernest, T. J., & Pokorny, J. (1976). Effect of hypoxia on FM100-Hue test performance. In G. Verriest (Ed.), Modern Problems in Ophthalmology, 17 (pp. 248–256). Karger.

Vingrys, A. J., & Garner, L. F. (1987). The effect of a moderate level of hypoxia on human color vision. Documenta Ophthalmologica, 66, 171–185. https://doi.org/10.1007/BF00140454

Mullen, K. T., & Plant, G. T. (1987). Threshold and suprathreshold deficits in color vision in optic neuritis. In G. C. Woo (Ed.), Low Vision (pp. 29–44). Springer. https://doi.org/10.1007/978-1-4612-4780-7_3

Bimler, D. L., Paramei, G. V., & Izmailov, C. A. (2009). Hue and saturation shifts from spatially induced blackness. Journal of the Optical Society of America A, 26(1), 163–172. https://doi.org/10.1364/JOSAA.26.000163

Mahon, L. E., & Vingrys, A. J. (1996). Normal saturation processing provides a model for understanding the effects of disease on color perception. Vision Research, 36(18), 2995–3002. https://doi.org/10.1016/0042-6989(95)00319-3

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Copyright (c) 2024 Yulia A. Griber, Galina V. Paramei