Диагностические возможности анализа сновидений: теоретические предпосылки и методические подходы
PDF (Английский)
PDF

Ключевые слова

сновидческая активность
психическая активность
диагностика
невротические состояния
соматические заболевания
висцеральная теория сна
быстрый сон

Аннотация

Введение. Нарушение некоторых когнитивных функций и общего психического состояния после массированного лечения затрудняет использование при реабилитации общепринятых опросных методов для диагностики неврологического и психологического статуса.  В этой связи актуальным методом представляется анализ сновидений, который, согласно современным исследованиям, позволяет выявить на ранних этапах нарушения психологического и соматического состояния  пациентов и сделать прогноз об их восстановлении. Теоретическое обоснование. В основе возможности применения анализа сновидения в качестве диагностического метода лежат современные представления о нейрофизиологических и психических механизмах сновидческой активности. Изменения сновидческой активности отмечены разными авторами при неврологических, психических и соматических заболеваниях. Все больше исследователей сходятся во мнении, что сновидения могут быть предвестниками, своеобразной «сигнальной системой» формирующихся соматических, неврологических и психических нарушений. Клинико-диагностический анализ сновидений при невротических нарушениях позволил выявить их особенности как при разных вариантах неврозов, так и на всех стадиях заболевания – от компенсации до декомпенсации. Установлено существование взаимосвязи между образами сновидений и предрасположенностью к тревожным состояниям, депрессии и астении. Обсуждение результатов. Существующие научные исследования позволяют говорить о возможности применения анализа сновидений в качестве ранней диагностики невротических состояний и соматических патологий, клинические симптомы которых еще не проявились симптоматически, но уже появляются в сновидениях. В статье выполнен обзор литературы по современным представлениям о нейрофизиологических и психических механизмах сновидений, указаны возможности применения результатов их анализа в качестве диагностической модели.

https://doi.org/10.21702/rpj.2023.1.4
PDF (Английский)
PDF

Библиографические ссылки

Авакумов, С. В. (2009). Психологическая модель сновидения в норме и патологии (кандидатская диссертация). Санкт-Петербургский государственный университет, Санкт-Петербург.

Александровский, Ю. А. (2000). Современная психофармакотерапия психогенных расстройств сна. Издательский центр «Академия».

Березина, Т. Н. (2015). Внутреннее пространство сновидения. Психология и психотехника, 2, 141–149.

Вейн, А. М., Хехт, К. (1989). Сон человека. Физиология и патология. Медицинa.

Голубев, В. Л., & Корабельникова, Е. А. (1996). Сновидения при неврозах у детей и подростков. Журнал невропатологии и психиатрии им. С. С. Корсакова, 96(3), 29–31.

Жучков, М. М., Тимошенко, С. О. (2019). Физиологические механизмы сновидений. Медико-биологические, клинические и социальные вопросы здоровья и патологии человека: Материалы V Всероссийской научной конференции студентов и молодых ученых с международным участием. Иваново: Ивановская государственная медицинская академия.

Калинчук, А. В., Анцыборов, А. В. (2020). Ночные кошмары в медицинской практике. Интерактивная наука, 3(49), 7–16. https://doi.org/10.21661/r-530443

Карвасарский, Б. Д. (1990). Неврозы. Медицина.

Ковальзон, В. М. (2021). Маятник сна. «Дискурс».

Корабельникова, Е. А., Голубев, В. Л. (2000) Сновидения и психологическая защита при невротических расстройствах у детей и подростков. Неврологический вестник, XXXII(1), 18–22. https://doi.org/10.17816/nb77667

Пигарев, И. Н., Пигарева, М. Л. (2014). Асинхронное развитие сна как вероятная причина снижения когнитивных функций и возникновения ряда патологических состояний, связанных с циклом «сон – бодрствование». Эффективная фармакотерапия, 22, 6–15.

Пигарев, И. Н., Пигарева, М. Л. (2018). Прогресс изучения сна в эпоху электрофизиологии. Висцеральная теория сна. Журнал неврологии и психиатрии имени С. С. Корсакова, 4(2), 5–13. https://doi.org/10.17116/jnevro2018118425

Пигарев, И. Н., Пигарева, М. Л., Левичкина, Е. В. (2019). К механизму терапевтического эффекта электростимуляции. Интерпретации и предсказания, основанные на результатах исследований сна. Журнал неврологии и психиатрии имени С. С. Корсакова, 119(4), 15–21. https://doi.org/10.17116/jnevro201911904215

Пичугина, И. М., Воронцова, В. С., Фролов, Д. И. (2017). Исследование сна и сновидений в соматической практике. Живая психология, 131–140. https://doi.org/10.18334/lp.4.2.38384

Пятин, В. Ф., Маслова, О. А., Романчук, Н. П., Волобуев, А. Н., Булгакова, С. В., Романов, Д. В., Сиротко, И. И. (2021). Нейровизуализация: структурная, функциональная, фармакологическая, биоэлементологии и нутрициологии. Бюллетень науки и практики, 7(10), 145–184. https://doi.org/10.33619/2414-2948/71/18

Фрейд, З. (2021). Толкование сновидений. Издательство «Эксмо».

Шкуратов, В. А. (2014). Смыслы фантазмов, или повествовательное Я в сновидениях и художественном вымысле. Российский психологический журнал, 11(3), 110–121.

Aime, M., Calcini, N., Borsa, M., Campelo, T., Rusterholz, T., Sattin, A., …, Adamantidis, A. (2022). Paradoxical somatodendritic decoupling supports cortical plasticity during REM sleep. Science, 376(6594), 724–730. https://doi.org/10.1126/science.abk2734

Alcaro, A., Carta, S. (2019). The «instinct” of imagination. A neuro-ethological approach to the evolution of the reflective mind and its application to psychotherapy. Frontiers in Human Neuroscience, 12, 522–534. https://doi.org/10.3389/fnhum.2018.00522

Arbune, A. A., Popa, I., Mindruta, I., Beniczky, S., Donos, C., Daneasa, A., …, Barborica, A. (2020). Sleep modulates effective connectivity: A study using intracranial stimulation and recording. Clinical Neurophysiology, 131(2), 529–541. https://doi.org/10.1016/j.clinph.2019.09.010

Barbeau, K., Turpin, C., Lafrenière, A., Campbell, E., De Koninck, J. (2022). Dreamers' evaluation of the emotional valence of their day-to-day dreams is indicative of some mood regulation function. Frontiers in Behavioral Neuroscience, 16, 947396–947407. https://doi.org/10.3389/fnbeh.2022.947396

Bhattacharya, B. S., Patterson, C., Galluppi, F., Durrant, S. J., Furber, S. (2014). Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study toward modeling sleep and wakefulness. Frontiers in Neural Circuits, 8, 46–68. https://doi.org/10.3389/fncir.2014.00046

Bulkeley, K. (2017). The future of dream science. Annals of the New York Academy of Sciences, 1406(1), 68–70. https://doi.org/10.1111/nyas.13415

Burk, L., Wehner, D., Soo, M. S. (2020). Dreams prior to biopsy for suspected breast cancer: A preliminary survey. Explore (NY), 16(6), 407–409. https://doi.org/10.1016/j.explore

Chambers, A. M. (2017). The role of sleep in cognitive processing: focusing on memory consolidation. Wiley Interdisciplinary Reviews in Cognitive Science, 8(3), 1433–1446. https://doi.org/10.1002/wcs.1433

De Angeli, F., Lovati, C., Giani, L., Mariotti, D'A. C., Raimondi, E., Scaglione, V., … Mariani, C. (2014). Negative emotions in migraineurs dreams: the increased prevalence of oneiric fear and anguish, unrelated to mood disorders. Behavioral Neurology, 2014, 919627–919631. https://doi.org/10.1155/2014/919627

de Cortiñas, L. P. (2013). Transformations of emotional experience. International Journal of Psychoanalysis, 94(3), 531–544. https://doi.org/10.1111/1745-8315.12083

De Gennaro, L., Marzano, C., Cipolli, C., Ferrara, M. (2012). How we remember the stuff that dreams are made of: neurobiological approaches to the brain mechanisms of dream recall. Behavioural Brain Research, 226(2), 592–596. https://doi.org/10.1016/j.bbr.2011.10.017

Domhoff , G. W., & Fox, K. (2015). Dreaming and the default network: A review, synthesis, and counterintuitive research proposal. Conscious Cognition, 33, 342–353. https://doi.org/10.1016/j.concog.2015.01.019

Fagioli, I. (2002). Mental activity during sleep. Sleep Medicine Reviews, 6(4), 307–320. https://doi.org/10.1053/smrv.2001.0214

Fazekas, P., & Nemeth, G. (2018). Dream experiences and the neural correlates of perceptual consciousness and cognitive access. Philosophical Transactions of the Royal Society Land B in Biological Sciences, 19, 1755–1766. https://doi.org/10.1098/rstb.2017.0356

Fazekas, P., & Nemeth, G. (2020). Dreaming, mind-wandering, and hypnotic dreams. Frontiers in Neurology, 11, 565673–565677. https://doi.org/10.3389/fneur.2020.565673

Fosse, R., Stickgold, R., Hobson, J. A. (2001). Brain-mind states: reciprocal variation in thoughts and hallucinations. Psychological Science, 12(1), 30–36. https://doi.org/10.1111/1467-9280.00306

Frohlich, J., Toker, D., Monti, M. M. (2021). Consciousness among delta waves: a paradox? Brain, 144(8), 2257–2277. https://doi.org/10.1093/brain/awab095

Gent, T. C, Bassetti, C., Adamantidis, A. R. (2018). Sleep-wake control and the thalamus. Current Opinions in Neurobiology, 52, 188–197. https://doi.org/10.1016/j.conb.2018.08.002

Ghrouz, A. K., Noohu, M. M., Dilshad Manzar, M., Warren Spence, D., BaHammam, A. S., Pandi-Perumal, S. R. (2019). Physical activity and sleep quality in relation to mental health among college students. Sleep Breath, 23(2), 627–634. https://doi.org/10.1007/s11325-019-01780-z

Hill, S., Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93(3), 1671–1698. https://doi.org/10.1152/jn.00915.2004

Hobson, J. A., Pace-Schott, E. F., Stickgold, R. (2000). Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behavioral Brain Science, 23, 793–842. https://doi.org/10.1017/s0140525x00003976

Hoel, E. (2021). The overfitted brain: Dreams evolved to assist generalization. Patterns (NY), 2(5), 100244–100250. https://doi.org/10.1016/j.patter.2021.100244

Hong, C. C., Fallon, J. H., Friston, K. J. (2021). fMRI evidence for default mode network deactivation associated with rapid eye movements in sleep. Brain Science, 11(11), 1528–1532. https://doi.org/10.3390/brainsci11111528

Hong, C. C., Fallon, J. H., Friston, K. J., Harris, J. C. (2018). Rapid eye movements in sleep furnish a unique probe into consciousness. Frontiers in Psychology, 31(9), 2087–2095. https://doi.org/10.3389/fpsyg.2018.02087

Hong, C. C., Harris, J. C., Pearlson, G. D., Kim, J. S., Calhoun, V. D., Fallon, J. H.,…, Pekar, J. J. (2009). fMRI evidence for multisensory recruitment associated with rapid eye movements during sleep. Human Brain Mapping, 30(5), 1705–1722. https://doi.org/10.1002/hbm.20635

Johnson, M. W., Hendricks, P. S., Barrett, F. S., Griffiths, R. R. (2019). Classic psychedelics: An integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharmacology & Therapeutics, 197, 83–102. https://doi.org/10.1016/j.pharmthera.2018.11.010

Kalsched, D. E. (2017). Trauma, innocence and the core complex of dissociation. Journal of Analytical Psychology, 62(4), 474–500. https://doi.org/10.1111/1468-5922.12333

Kelmanson, I. (2018). Current ideas about the origin of dreams and their formation in ontogenesis, their significance in clinical practice. Vrach, 29(4), 12–25. https://doi.org/10.29296/25877305-2018-04-03

Kim, K., Hwang, G., Cho, Y. H., Kim, E. J., Woang, J. W., Hong, C. H., …, Roh, H. W. (2022). Relationships of physical activity, depression, and sleep with cognitive function in community-dwelling older adults. International Journal of Environmental Research and Public Health, 19(23), 15655–15678. https://doi.org/10.3390/ijerph192315655

Konkoly, K. R., Appel, K., Chabani, E., Mangiaruga, A., Gott, J., Mallett, R., …, Paller, K. A. (2021). Real-time dialogue between experimenters and dreamers during REM sleep. Current Biology, 31(7), 1417–1427. https://doi.org/10.1016/j.cub.2021.01.026

Kraehenmann, R. (2017). Dreams and psychedelics: neurophenomenological comparison and therapeutic implications. Current Neuropharmacology, 15(7), 1032–1042. https://doi.org/10.2174/1573413713666170619092629

Lai, G., Langevin, J. P., Koek, R. J., Krahl, S. E., Bari, A. A., Chen, J. W. Y. (2020). Acute effects and the dreamy state evoked by deep brain electrical stimulation of the amygdala: associations of the amygdala in human dreaming, consciousness, emotions, and creativity. Frontiers in Human Neuroscience, 14, 61–82. https://doi.org/10.3389/fnhum.2020.00061

Liu, Y. T., Zhang, H. X., Li, H. J., Chen, T., Huang, Y. Q., Zhang, L., … Yang, M. (2018). Aberrant interhemispheric connectivity in obstructive sleep apnea-hypopnea syndrome. Frontiers in Neurology, 9, 314–319. https://doi.org/10.3389/fneur.2018.00314

Lovati, C., DeAngeli, F., D'Amico, D., Giani, L., D'Alessandro, C. M., Zardoni, M., … Mariani, C. (2014). Is the brain of migraineurs «different» even in dreams? Neurological Science, 35(1), 167–169. https://doi.org/10.1007/s10072-014-1762-0

Luczak, A., Kubo, Y. (2022). Predictive Neuronal Adaptation as a Basis for Consciousness. Frontiers in Systems Neuroscience, 15, 767461–767472. https://doi.org/10.3389/fnsys.2021.767461

Martinec, L., Miletínová, E., Kliková, M., Bušková, N. (2021). Effects of all-night exposure to ambient odour on dreams and affective state upon waking. Physiology & Behavior, 230, 113265–113286. https://doi.org/10.1016/j.physbeh.2020.113265

Matei, M., Bergel, A., Pezet, S., Tanter, M. (2022). Global dissociation of the posterior amygdala from the rest of the brain during REM sleep. Communications in Biology, 5(1), 1306–1312. https://doi.org/10.1038/s42003-022-04257-0

Miyauchi, S., Misaki, M., Kan, S., Fukunaga, T., Koike, T. (2009). Human brain activity time-locked to rapid eye movements during REM sleep. Experimental Brain Research, 192(4), 657–667. https://doi.org/10.1007/s00221-008-1579-2

Naiman, R. (2017). Dreamless: the silent epidemic of REM sleep loss. Annals of the New York Academy of Science, 1406(1), 77–85. https://doi.org/10.1111/nyas.13447

Nigam, M., Ayadi, I., Noiray, C., Branquino-Bras, A. C., Herraez, S. E., Leu-Semenescu, S., …, Arnulf, I. (2021). Sweet or bland dreams? Taste loss in isolated REM-sleep behavior disorder and parkinson's disease. Movement Disorders, 36(10), 2431–2435. https://doi.org/10.1002/mds.28692

Nir, Yu., & Tononi, G. (2010). Dreaming and the brain: from phenomenology to neurophysiology. Trends in Cognitive Science, 14(2), 88–123. https://doi.org/10.1016/j.tics.2009.12.001

O'Malley, M. W., Datta, S. (2013). REM sleep regulating mechanisms in the cholinergic cell compartment of the brainstem. Indian Journal of Sleeping Medicine, 8(2), 58–66. https://doi.org/10.5958/j.0974-0155.8.2.009

Palmer, C. A., Alfano, C. A. (2017). Sleep and emotion regulation: An organizing, integrative review. Sleep Medicine Reviews, 31, 6–16. https://doi.org/10.1016/j.smrv.2015.12.006

Parrino, L., Halasz, P., Szucs, A., Thomas, R. J., Azzi, N., Rausa, F., …, Mutti, C. (2022). Sleep medicine: Practice, challenges and new frontiers. Frontiers in Neurology, 13, 966659–966668. https://doi.org/10.3389/fneur.2022.966659

Picard-Deland, C, Allaire, M. A., Nielsen, T. (2022). Postural balance in frequent lucid dreamers: a replication attempt. Sleep, 45(7), 105–115. https://doi.org/10.1093/sleep/zsac105

Picard-Deland, C., Pastor, M., Solomonova, E., Paquette, T., Nielsen, T. (2020). Flying dreams stimulated by an immersive virtual reality task. Consciousness and Cognition, 83, 102958–102966. https://doi.org/10.1016/j.concog.2020.102958

Pigarev, I. N. (2013). The visceral theory of sleep. Zhurnal vysshei nervnoi deyatelnosti imeni I P Pavlova, 63(1), 86–104. https://doi.org/10.7868/s0044467713010115

Pigarev, I. N., Pigareva, M. L. (2017). Association of sleep impairments and gastrointestinal disorders in the context of the visceral theory of sleep. Journal of Integrative Neuroscience, 16(2), 143–156. https://doi.org/10.3233/JIN-170005

Pigarev, I. N., Pigareva, M. L. (2018). Progress of sleep studies in the age of electrophysiology. The visceral theory of sleep. Zhurnal nevrologii i psikhiatrii imeni S S Korsakova, 118(2), 5–13. https://doi.org/10.17116/jnevro2018118425

Rao, A. R., Cecchi, G. A., Kaplan, E. (2015). Editorial: Towards an integrated approach to measurement, analysis and modeling of cortical networks. Frontiers in Neural Circuits, 9, 61–78. https://doi.org/10.3389/fncir.2015.00061

Rué-Queralt, J., Stevner, A., Tagliazucchi, E., Laufs, H., Kringelbach, M.L., Deco, G., Atasoy, S. (2021). Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Community Biology, 4(1), 854–859. https://doi.org/10.1038/s42003-021-02369-7

Revonsuo, A. (2001). The reinterpretation of dreams: an evolutionary hypothesis of the function of dreaming. Behavioral and Brain Sciences, 23(6), 877–901. https://doi.org/10.1017/S0140525X00004015

Samson-Daoust, E., Julien, S.H., Beaulieu-Prévost, D., Zadra, A. (2019). Predicting the affective tone of everyday dreams: A prospective study of state and trait variables. Science Report, 9(1), 14780–14789. https://doi.org/10.1038/s41598-019-50859-w

Scarpelli, S., Bartolacci, C., D'Atri, A., Gorgoni, M., De Gennaro, L. (2019). The functional role of dreaming in emotional processes. Frontiers in Psychology, 10, 459–462. https://doi.org/10.3389/fpsyg.2019.00459

Scarpelli, S., Alfonsi, V., Gorgoni, M., Giannini, A. M.; De Gennaro, L. (2021). Investigation on neurobiological mechanisms of dreaming in the new decade. Brain Science, 11, 220–241. https://doi.org/10.3390/brainsci11020220

Siclari, F., & Tononi, G. (2017). Local aspects of sleep and wakefulness. Current Opinions in Neurobiology, 44, 222–227. https://doi.org/0.1016/j.conb.2017.05.008

Siclari, F., Baird, B., Perogamvros, L., Bernardi, G., LaRocque, J. J., Riedner, B., … Tononi, G. (2017). The neural correlates of dreaming. Nature Neuroscience, 20(6), 872–878. https://doi.org/10.1038/nn.4545

Siclari, F., Valli, K., Arnulf, I. (2020). Dreams and nightmares in healthy adults and in patients with sleep and neurological disorders. Lancet Neurology, 19(10), 849–859. https://doi.org/10.1016/S1474-4422(20)30275-1

Sikka, P., Engelbrektsson, H., Zhang, J., Gross, J. J. (2022). Negative dream affect is associated with next-day affect level, but not with affect reactivity or affect regulation. Frontiers in Behavioral Neurosciense, 16, 981289–981297. https://doi.org/10.3389/fnbeh.2022.981289

Sikka, P., Revonsuo, A., Noreika, V., Valli, K. (2019). EEG frontal alpha asymmetry and dream affect: alpha oscillations over the right frontal cortex during rem sleep and presleep wakefulness predict anger in REM sleep dreams. Neuroscience, 39(24), 4775–4784. https://doi.org/10.1523/JNEUROSCI.2884-18.2019

Sikka, P., Valli, K., Revonsuo, A., Tuominen, V. (2021). The dynamics of affect across the wake-sleep cycle: From waking mind-wandering to night-time dreaming. Consciousness and Cognition, 94, 103189–103196. https://doi.org/10.1016/j.concog.2021.103189

Sikkens, T., Bosman, C. A., Olcese, U. (2019). The role of top-down modulation in shaping sensory processing across brain states: implications for consciousness. Frontiers in Systems Neuroscience, 13, 31–45. https://doi.org/10.3389/fnsys.2019.00031

Solms, M. (1997). The neuropsychology of dreaming: a Clinico-Anatomical Study. Lawrence Erlbaum Associates.

Solms, M. (2000). Dreaming and REM sleep are controlled by different brain mechanisms. Behavioral Brain Science, 23, 843–850. https://doi.org/10.1017/s0140525x00003988

Steriade, M. (2003). Neuronal Substrates of Sleep and Epilepsy. Cambridge University Press.

Stettner, G. M., Lei, Y., Benincasa, H. K., Kubin, L. (2013). Evidence that adrenergic ventrolateral medullary cells are activated whereas precerebellar lateral reticular nucleus neurons are suppressed during REM sleep. PLoS One, 8(4), 62410–62417. https://doi.org/10.1371/journal.pone.0062410

Stickgold, R. (2013). Parsing the role of sleep in memory processing. Current Opinion in Neurobiology, 23(5), 847–853. https://doi.org/10.1016/j.conb.2013.04.002

Tivadar, R. I., Knight, R. T., Tzovara, A. (2021). Automatic sensory predictions: a review of predictive mechanisms in the brain and their link to conscious processing. Frontiers in Human Neuroscience, 15, 702520–702530. https://doi.org/10.3389/fnhum.2021.702520

Vallat, R., Nicolas, A., Ruby, P. (2020). Brain functional connectivity upon awakening from sleep predicts interindividual differences in dream recall frequency. Sleep, 43(12), 116–124. https://doi.org/10.1093/sleep/zsaa116

Vallat, R., Türker, B., Nicolas, A., Ruby, P. (2022). High Dream Recall Frequency is Associated with Increased Creativity and Default Mode Network Connectivity. Nature and Science of Sleep, 14, 265–275. https://doi.org/10.2147/NSS.S342137

Van De Poll, M. N., & van Swinderen, B. (2021). Balancing prediction and surprise: A role for active sleep at the dawn of consciousness? Frontiers in Systems Neuroscience, 15, 768762–768770. https://doi.org/10.3389/fnsys.2021.768762

Vandekerckhove, M., & Wang, Y. L. (2017). Emotion, emotion regulation and sleep: An intimate relationship. AIMS Neuroscience, 5(1), 1–17. https://doi.org/10.3934/Neuroscience.2018.1.1

Vanek, J., Prasko, J., Ociskova, M., Holubova, M., Minarikova, K., Kamaradova-Koncelikova, D.,…, Nesnidal, V. (2020). Nightmares and their treatment. Neuro Endocrinology Letters, 41(2). 86–101.

Vertes, R. P., Linley, S. B. (2021). No cognitive processing in the unconscious, anesthetic-like, state of sleep. The Journal of Comparative Neurology, 529(3), 524–538. https://doi.org/10.1002/cne.24963

Voss, U., Klimke, A. (2018). Dreaming during REM sleep: autobiographically meaningful or a simple reflection of a Hebbian-based memory consolidation process? Archives Italiennes de Biologie, 156(3), 99–111. https://doi.org/10.12871/00039829201832

Wamsley, E. J. (2013). Dreaming, waking conscious experience, and the resting brain: report of subjective experience as a tool in the cognitive neurosciences. Frontiers in Psychology, 4, 637–648. https://doi.org/10.3389/fpsyg.2013.00637

Wamsley, E. J. (2020). How the brain constructs dreams. Elife, 9. https://doi.org/10.7554/eLife.58874

Witvliet, C. V. O., Blank, S. L., Gall, A. J. (2022). Compassionate reappraisal and rumination impact forgiveness, emotion, sleep, and prosocial accountability. Front in Psychology, 13, 992768–992775. https://doi.org/10.3389/fpsyg.2022.992768

Yang, Z., & Lewis, L. D. (2021). Imaging the temporal dynamics of brain states with highly sampled fMRI. Current Opinion in Behavioral Science, 40, 87–95. https://doi.org/10.1016/j.cobeha.2021.02.005

Yu, X., Zhao, G., Wang, D., Wang, S., Li, R., Li, A.,…, Wisden, W. (2022). A specific circuit in the midbrain detects stress and induces restorative sleep. Science, 377(6601), 63–72. https://doi.org/10.1126/science.abn0853

Zhou, S., Zou, G., Xu, J., Su, Z., Zhu, H., Zou, Q., Gao, J. H. (2019). Dynamic functional connectivity states characterize NREM sleep and wakefulness. Human Brain Mapping, 40(18), 5256–5268. https://doi.org/10.1002/hbm.24770

Zhu, Y., Ren, F., Zhu, Y., Zhang, X., Liu, W., Tang, X., …, Zheng, M. (2020). Gradually increased interhemispheric functional connectivity during one night of sleep deprivation. Nature and Science of Sleep, 12, 1067–1074. https://doi.org/10.2147/NSS.S270009

Zou, Q., Zhou, S., Xu, J., Su, Z., Li, Y., Ma, Y., …, Gao, J. H. (2018). Dissociated resting-state functional networks between the dream recall frequency and REM sleep percentage. Neuroimage, 174, 248–256. https://doi.org/10.1016/j.neuroimage.2018.03.015

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Copyright (c) 2023 Зинаида И. Березина, Олег И. Кит, Екатерина Ф. Комарова, Юлия Ю. Арапова, Татьяна П. Протасова