The Effect of Self-Reflection on Electrophysiological Activity of the Brain Depending on the Level of Anxiety
PDF
PDF (Russian)

Keywords

self-reflection
anxiety
self-reference
EEG
electroencephalogram
alpha rhythm
theta rhythm
cognitive processes

Abstract

Introduction. High levels of anxiety are often associated with abnormal activity in the brain areas involved in emotional processing, cognitive control, and reduced connectivity in the default mode network (DMN). Studies also show that the activation of the DMN increases during self-reflection processes, especially positive self-reference, suggesting the possibility of using self-reflection to reduce anxiety. This study aims to test this hypothesis on the basis of EEG dynamic data before and after tasks that engage in self-reflection. Methods. The study population comprised 127 participants (mean age 25 ± 8 years). The sample was divided into low- and high-anxious groups and into experimental and control subgroups. Experimental subgroups were subjected to an Imaginary and Self-Reflective Resource (ISRR) technique developed by the author to engage participants in self-reflection. The control groups completed tasks in a disciplinary academic field – a standard cognitive load. EEG recordings were made before and after the tasks were completed. Results. The results showed that high levels of anxiety tend to lead to cognitive fatigue when completing typical cognitive tasks. At the same time, the self-reflection process combined with high levels of anxiety does not lead to a serious cognitive fatigue, but rather reflects the attention process.  Low anxiety is generally associated with lower cognitive fatigue. In low-anxious subjects, the completion of self-reflection tasks involves a significant brain activation that characterizes attention processes. Discussion. The results obtained are consistent with those of other researchers and generally confirm the hypothesis of the study. Positive self-reflection can reduce high levels of anxiety due to the DMN activation.

https://doi.org/10.21702/rpj.2024.3.10
PDF
PDF (Russian)

References

Базанова, О.М. (2011). Современная интерпретация альфа-активности ЭЭГ. Международный Неврологический Журнал, 46(8), 96–104.

Балиоз, Н.В. (2012). Индивидуально-типологические особенности ЭЭГ спортсменов при остром гипоксическом воздействии. Физиология Человека, 38(5), 24.

Быховец, Ю. В., Падун, М. А. (2019). Личностная тревожность и регуляция эмоций в контексте изучения посттравматического стресса. Клиническая и специальная психология, 8(1), 78–89. https://doi.org/10.17759/psyclin.2019080105

Выготский, Л. С. (1982). Мышление и речь. Собрание сочинений: В 6-ти т. Т. 2. Проблемы общей психологии. В. В. Давыдов (ред.). Педагогика.

Выготский, Л. С. (1984). Орудие и знак в развитии ребенка. Собрание сочинений: В 6-ти т. Т. 6. Научное наследство. М. Г. Ярошевский (ред.). Педагогика.

Грехов, Р. А., Сулейманова, Г. П., Адамович, Е. И. (2017). Роль тревоги в психофизиологии стресса. Вестник ВолГУ. Серия 11, Естественные науки, 7(1), 57–66. https://doi.org/10.15688/jvolsu11.2017.1.7

Зинченко, В. П., Мещеряков, Б. Г. (2008). Большой психологический словарь. В. П. Зинченко, Б. Г. Мещеряков (ред.). СПб.

Карпов, А. В. (2012). Рефлексивная детерминация деятельности и личности. М.: РАО, 476 с.

Карпов, А. В. (2018). Метасистемная организация индивидуальных качеств личности. Ярославль: ЯрГУ, 744 с.

Лысенко, В. М. (2022). Оценка стрессоустойчивости и уровня тревоги в зависимости от типа личности. Инновационные механизмы решения проблем научного развития: сборник статей Международной научно-практической конференции. OMEGA SCIENCE, 143-147.

Маслова, Т. М., Покацкая, А. В. (2019). Тревожность личности как фактор развития стрессоустойчивости. Азимут научных исследований: педагогика и психология, 8(2(27)), 352–354.

Сизикова Т. Э. (2018). Рефлексивное психологическое консультирование. Изд-во НГПУ.

Сизикова, Т. Э. (2018). Мета-модель рефлексии в рамках мета-онтологии. Сибирский психологический журнал, 68, 6–31. https://doi.org/10.17223/17267080/66/1

Сизикова, Т. Э., Кудрявцев, В. Т. (2023). Схема теории Льва Выготского. Часть 2. Культурно-историческая психология, 19(3), 23–29. https://doi.org/10.17759/chp.2023190303

Сизикова, Т. Э., Леонов, С. В., Поликанова, И. С. (2024). Свободное действие и его психофизиологические корреляты. Культурно-историческая психология, 20(2), 15–22.

Сизикова, Т. Э., Кудрявцев, В. Т. (2023). Схема теории Льва Выготского. Часть I. Культурно-историческая психология, 19(2), 9–17. https://doi.org/10.17759/chp.2023190202

Сизикова, Т. Э., Леонов, С. В., Поликанова, И. С. (2024). Динамика функционального состояния сердечно-сосудистой системы в задаче на рефлексию при разных уровнях тревожности. Экспериментальная психология (в печати).

Спилбергер, Ч. Д., Ханин, Ю. Л. (2000). Шкала оценки уровня реактивной и личностной тревожности. Психологические Тесты, 1, 39–45.

Ясько, Б. А., Скрипниченко, Л. С., Стриханов, С. Н., Тедорадзе, Д. Д. (2023). Личностные предикторы стрессоустойчивости медицинских работников. Российский психологический журнал, 20(2), 169–184. https://doi.org/10.21702/rpj.2023.2.11

Abraham, A., Kaufmann, C., Redlich, R., Hermann, A., Stark, R., Stevens, S., & Hermann, C. (2013). Self-referential and anxiety-relevant information processing in subclinical social anxiety: An fMRI study. Brain Imaging and Behavior, 7(1), 35–48. https://doi.org/10.1007/s11682-012-9188-x

Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neuroscience Letters, 310(1), 57–60. https://doi.org/10.1016/S0304-3940(01)02094-8

Aftanas, L. I., Varlamov, A. A., Pavlov, S. V., Makhnev, V. P., & Reva, N. V. (2001). Affective picture processing: Event-related synchronization within individually defined human theta band is modulated by valence dimension. Neuroscience Letters, 303(2), 115–118. https://doi.org/10.1016/S0304-3940(01)01703-7

Araujo, H. F., Kaplan, J., & Damasio, A. (2013). Cortical Midline Structures and Autobiographical-Self Processes: An Activation-Likelihood Estimation Meta-Analysis. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00548

Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29–32. https://doi.org/10.1016/S0304-3940(99)00679-5

Bastiaansen, M. C. M., Van Berkum, J. J. A., & Hagoort, P. (2002). Event-related theta power increases in the human EEG during online sentence processing. Neuroscience Letters, 323(1), 13–16. https://doi.org/10.1016/S0304-3940(01)02535-6

Bastiaansen, M., & Hagoort, P. (2006). Oscillatory neuronal dynamics during language comprehension. In Progress in Brain Research (Vol. 159, pp. 179–196). Elsevier. https://doi.org/10.1016/S0079-6123(06)59012-0

Beer, J. S., Lombardo, M. V., & Bhanji, J. P. (2010). Roles of Medial Prefrontal Cortex and Orbitofrontal Cortex in Self-evaluation. Journal of Cognitive Neuroscience, 22(9), 9. https://doi.org/10.1162/jocn.2009.21359

Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia, 56, 393–400. https://doi.org/10.1016/j.neuropsychologia.2014.02.010

Cummins, T. D. R., & Finnigan, S. (2007). Theta power is reduced in healthy cognitive aging. International Journal of Psychophysiology, 66(1), 10–17. https://doi.org/10.1016/j.ijpsycho.2007.05.008

D’Argembeau, A., Ruby, P., Collette, F., Degueldre, C., Balteau, E., Luxen, A., Maquet, P., & Salmon, E. (2007). Distinct Regions of the Medial Prefrontal Cortex Are Associated with Self-referential Processing and Perspective Taking. Journal of Cognitive Neuroscience, 19(6), Article 6. https://doi.org/10.1162/jocn.2007.19.6.935

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848–13853. https://doi.org/10.1073/pnas.0601417103

Doppelmayr, M., Finkenzeller, T., & Sauseng, P. (2008). Frontal midline theta in the pre-shot phase of rifle shooting: Differences between experts and novices. Neuropsychologia, 46(5), 1463–1467. https://doi.org/10.1016/j.neuropsychologia.2007.12.026

Doppelmayr, M., Klimesch, W., Stadler, W., Pöllhuber, D., & Heine, C. (2002). EEG alpha power and intelligence. Intelligence, 30(3), 289–302. https://doi.org/10.1016/S0160-2896(01)00101-5

Fossati, P., Hevenor, S. J., Lepage, M., Graham, S. J., Grady, C., Keightley, M. L., Craik, F., & Mayberg, H. (2004). Distributed self in episodic memory: Neural correlates of successful retrieval of self-encoded positive and negative personality traits. NeuroImage, 22(4), 1596–1604. https://doi.org/10.1016/j.neuroimage.2004.03.034

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102

Fransson, P. (2005). Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29. https://doi.org/10.1002/hbm.20113

Hu, C., Di, X., Eickhoff, S. B., Zhang, M., Peng, K., Guo, H., & Sui, J. (2016). Distinct and common aspects of physical and psychological self-representation in the brain: A meta-analysis of self-bias in facial and self-referential judgements. Neuroscience & Biobehavioral Reviews, 61, 197–207. https://doi.org/10.1016/j.neubiorev.2015.12.003

Imperatori, C., Farina, B., Adenzato, M., Valenti, E. M., Murgia, C., Marca, G. D., Brunetti, R., Fontana, E., & Ardito, R. B. (2019). Default mode network alterations in individuals with high-trait-anxiety: An EEG functional connectivity study. Journal of Affective Disorders, 246, 611–618. https://doi.org/10.1016/j.jad.2018.12.071

Jenkins, A. C., & Mitchell, J. P. (2011). Medial prefrontal cortex subserves diverse forms of self-reflection. Social Neuroscience, 6(3), 211–218. https://doi.org/10.1080/17470919.2010.507948

Kim, K., & Johnson, M. K. (2015). Activity in ventromedial prefrontal cortex during self-related processing: Positive subjective value or personal significance? Social Cognitive and Affective Neuroscience, 10(4), 4. https://doi.org/10.1093/scan/nsu078

Kircher, T. T. J., Brammer, M., Bullmore, E., Simmons, A., Bartels, M., & David, A. S. (2002). The neural correlates of intentional and incidental self processing. Neuropsychologia, 40(6), 6. https://doi.org/10.1016/S0028-3932(01)00138-5

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195. https://doi.org/10.1016/S0165-0173(98)00056-3

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007

Knyazev, G. G. (2013). EEG Correlates of Self-Referential Processing. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00264

Kuiken, D., & Mathews, J. (1986). EEG and Facial EMG Changes during Self-Reflection with Affective Imagery. Imagination, Cognition and Personality, 6(1), 55–66. https://doi.org/10.2190/933R-0QV9-KH9Y-MQ4N

Michels, L., Lüchinger, R., Koenig, T., Martin, E., & Brandeis, D. (2012). Developmental Changes of BOLD Signal Correlations with Global Human EEG Power and Synchronization during Working Memory. PLoS ONE, 7(7), e39447. https://doi.org/10.1371/journal.pone.0039447

Morin, A. (2007). Self-Awareness and the Left Hemisphere: The Dark Side of Selectively Reviewing the Literature. Cortex, 43(8), 8. https://doi.org/10.1016/S0010-9452(08)70704-4

Mu, Y., & Han, S. (2010). Neural oscillations involved in self-referential processing. NeuroImage, 53(2), Article 2. https://doi.org/10.1016/j.neuroimage.2010.07.008

Ochsner, K. N., Beer, J. S., Robertson, E. R., Cooper, J. C., Gabrieli, J. D. E., Kihsltrom, J. F., & D’Esposito, M. (2005). The neural correlates of direct and reflected self-knowledge. NeuroImage, 28(4), 4. https://doi.org/10.1016/j.neuroimage.2005.06.069

Perry, A., Stein, L., & Bentin, S. (2011). Motor and attentional mechanisms involved in social interaction—Evidence from mu and alpha EEG suppression. NeuroImage, 58(3), 895–904. https://doi.org/10.1016/j.neuroimage.2011.06.060

Pfeifer, J. H., Masten, C. L., Borofsky, L. A., Dapretto, M., Fuligni, A. J., & Lieberman, M. D. (2009). Neural Correlates of Direct and Reflected Self‐Appraisals in Adolescents and Adults: When Social Perspective‐Taking Informs Self‐Perception. Child Development, 80(4), 1016–1038. https://doi.org/10.1111/j.1467-8624.2009.01314.x

Polikanova, I. S., & Leonov, S. V. (2016). Psychophysiological and molecular genetic correlates of fatigue. Journal of Modern Foreign Psychology, 5(4), 24–35. https://doi.org/10.17759/jmfp.2016050403

Ray, W. J., & Cole, H. W. (1985). EEG Alpha Activity Reflects Attentional Demands, and Beta Activity Reflects Emotional and Cognitive Processes. Science, 228(4700), 750–752. https://doi.org/10.1126/science.3992243

Salvador, C. E., Kraus, B. T., Ackerman, J. M., Gelfand, M. J., & Kitayama, S. (2020). Interdependent self-construal predicts reduced sensitivity to norms under pathogen threat: An electrocortical investigation. Biological Psychology, 157, 107970. https://doi.org/10.1016/j.biopsycho.2020.107970

Saviola, F., Pappaianni, E., Monti, A., Grecucci, A., Jovicich, J., & De Pisapia, N. (2020). Trait and state anxiety are mapped differently in the human brain. Scientific Reports, 10(1), 11112. https://doi.org/10.1038/s41598-020-68008-z

Sebastian, C., Burnett, S., & Blakemore, S.-J. (2008). Development of the self-concept during adolescence. Trends in Cognitive Sciences, 12(11), 441–446. https://doi.org/10.1016/j.tics.2008.07.008

Shi, Z., Zhou, A., Liu, P., Zhang, P., & Han, W. (2011a). An EEG study on the effect of self-relevant possessive pronoun: Self-referential content and first-person perspective. Neuroscience Letters, 494(2), 2. https://doi.org/10.1016/j.neulet.2011.03.007

Sizikova, T. (2019). Polymodality of reflection: triangular relations between modalities. Book of Abstracts: XVI European Congress of Psychology (ECP 2019) (2‒5 July, 2019, Lomonosov Moscow State University, Moscow). Moscow University Press.

Sizikova, T., Durachenko, O. (2020) "Curve mirror" and the authenticity of reflection: the third row of a triangular network of modalities. European Science Review, 5-6, 49–60.

Sizikova, T., Durachenko, O. (2020). Polymodality of reflection: triangular relations between modalities. European Science Review, 5-6, 40–48.

Somerville, L. H., Jones, R. M., Ruberry, E. J., Dyke, J. P., Glover, G., & Casey, B. J. (2013). The Medial Prefrontal Cortex and the Emergence of Self-Conscious Emotion in Adolescence. Psychological Science, 24(8), 1554–1562. https://doi.org/10.1177/0956797613475633

Spreng, R. N., & Grady, C. L. (2010). Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of Mind, and Their Relationship to the Default Mode Network. Journal of Cognitive Neuroscience, 22(6), 1112–1123. https://doi.org/10.1162/jocn.2009.21282

Thatcher, R. W., North, D. M., & Biver, C. J. (2008). Intelligence and EEG phase reset: A two compartmental model of phase shift and lock. NeuroImage, 42(4), 1639–1653. https://doi.org/10.1016/j.neuroimage.2008.06.009

Tracy, A., Jopling, E., & LeMoult, J. (2021). The effect of self-referential processing on anxiety in response to naturalistic and laboratory stressors. Cognition and Emotion, 35(7), 1320–1333. https://doi.org/10.1080/02699931.2021.1951675

Wang, C., Wang, Y., Lau, W. K. W., Wei, X., Feng, X., Zhang, C., Liu, Y., Huang, R., & Zhang, R. (2021). Anomalous static and dynamic functional connectivity of amygdala subregions in individuals with high trait anxiety. Depression and Anxiety, 38(8), 860–873. https://doi.org/10.1002/da.23195

Xu, J., Van Dam, N. T., Feng, C., Luo, Y., Ai, H., Gu, R., & Xu, P. (2019). Anxious brain networks: A coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neuroscience & Biobehavioral Reviews, 96, 21–30. https://doi.org/10.1016/j.neubiorev.2018.11.005

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Russian Psychological Journal