Metacognitive Determination of Effective Parameters in Programmers’ Activity
PDF
PDF (Russian)

Keywords

metacognitive qualities
metacognitive potential
programmers’ activity
reflexivity
information activity
voluntary regulation
activity quality
performance
efficiency

Abstract

Introduction. Currently, information-related activity studies based on computer technologies and the identification and explanation of its cognitive and metacognitive determinants are of particular relevance. In this respect, it is objectively necessary to converge research in two important areas – metacognitivism and the psychology of professional information-related activity. This study is the first to identify and interpret the fundamental patterns of the deterministic influence of metacognitive factors on the effective parameters of information-related activity, including the optimum type dependency between metacognitive factors and efficiency. Methods. The sample (n = 210) consisted of programmers of various profiles and levels working in Yaroslavl, Moscow, and Rybinsk. The study used psychodiagnostic procedures, including the Complex Inventory of Metacognitive Potential (CIMP) developed by the authors and methods developed in metacognitivism. Results. The findings indicated that the deterministic influence of metacognitive potential on the effective parameters of programmers’ activity was essentially diverse in terms of degree and direction. It synthesized both positive and negative characteristics, ultimately determining the complex and nonlinear nature of this influence and the presence of the optimum type dependency between the severity of metacognitive potential and efficiency. Discussion. The results are interpreted from the perspectives of metacognitivism and the basic perspectives of the psychology of information-related professional activity. Finally, the conclusion was that the negative influence of metacognitive factors on effective parameters of activity is determined by a combination of their direct and indirect impacts on the implementation of activity and particular functions to ensure their performance.

https://doi.org/10.21702/rpj.2023.1.7
PDF
PDF (Russian)

References

Бакунович, М. Ф., Станкевич, Н. Л. (2018). Самоконтроль как базовый элемент профессиональной компетентности будущих IT-специалистов. Интеграция образования, 4(93), 681–695. https://doi.org/10.15507/1991-9468.093.022.201804.681-695

Демиденко, Н. Н., Ератина, Е. А. (2021). Профессиограмма IT-специалиста с учетом психологических особенностей его деятельности. Психология труда, организации и управления в условиях цифровой трансформации общества, 151–160.

Журина, М. А. (2019). Субъективные представления о профессиональной успешности IT-специалистов. Вестник Тверского государственного университета. Серия: Педагогика и психология, 4(49), 243–249.

Карпов, А. А. (2018). Структура метакогнитивной регуляции управленческой деятельности. Ярославский государственный университет.

Карпов, А. В. (1980). Системная регуляция точности и скорости деятельности оператора в условиях неопределенности. Проблемы индустриальной психологии. Ярославский государственный университет.

Карпов, А. В. (2015). Психология деятельности (в 5 томах). РАО.

Карпов, А. В., Леньков, С. Л. (2006). Структурно-функциональное строение профессиональной деятельности информационного характера. Тверской Государственный Университет.

Карпов, А. В. (2021). Методологические основы психологии информационной деятельности. РАО.

Карпов, А. В, Карпов, А. А. (2022). Структура метакогнитивной регуляции информационной деятельности. РАО.

Никитин, А., Ляпин, Д. (2010). Путь программиста. Школа программирования.

Орел, Е. А. (2007). Особенности интеллекта профессиональных программистов. Вестник Московского университета, 14(2), 70–79.

Плоткина, Л. Н. (2010). Социально-психологический анализ профессионально-значимых характеристик специалистов в области информационных технологий. Известия Самарского научного центра РАН, 12 (5–1), 137–144.

Захур, Д. (2018). Программист на всю голову: как кодинг влияет на мышление. URL: https://habr.com/ru/company/binarydistrict/blog/425385/

Лексунин, Е. (2012). Психологическая деформация программистов. Взгляд с обеих сторон баррикад. URL: https://habr.com/ru/post/285472/

Федоришин, М. В. (2020). Закономерности индивидуализации в структуре саморегуляции (на материале опыта профессиональной военной подготовки) Ярославль.

Холодная, М. А. (2012). Психология понятийного мышления. От концептуальных структур к понятийным способностям. Когито-Центр.

Abdelrahman, R. M. (2020). Metacognitive awareness and academic motivation and their impact on academic achievement of Ajman University students. Heliyon, 6(9). https://doi.org/10.1016/j.heliyon.2020.e04192

Allon, M., Gutkin, T. B., Bruning, R. (1994). The relationship between metacognition and intelligence in normal adolescents: Some tentative but surprising findings. Psychology in the Schools, 31(2), 93–97.

Anderson, J. R. (1985). Cognitive psychology and its implications (2nd ed.). W. H. Freeman.

Bødker, S., Klokmose, N. (2011). Тhe Human–Artifact Model: An Activity Theoretical Approach to Artifact Ecologies. Human–Computer Interaction, 26(4), 315–371. https://doi.org/10.1080/07370024.2011.626709

Borkowski, J., Muthukrishna, R. (1992). Components of children’s metamemory. In Memory Development. F. E. Weinert, M. Perlmutter (Eds.). Memory development: Universal changes and individual differences. Erlbaum.

Card, S., Moran, T., Newell, A. (1983). The Psychology of Human Computer Interaction. Erlbaum.

Craig, K., Hale, D., Grainger, C., Stewart, M. E. (2020). Evaluating metacognitive self-reports: Systematic reviews of the value of self-report in metacognitive research. Metacognition and Learning, 15, 155–213. https://doi.org/10.1007/s11409-020-09222-y

Dixon, R. A., Hultsch, D. F. (1983). Structure and development of metamemory in adulthood. Journal of Gerontology, 38(6), 682–688. https://doi.org/10.1093/geronj/38.6.682

Dori, Y. J., Mevarech, Z. R., Baker, D. R. (Eds.) (2018). Cognition, metacognition, and culture in STEM education: Learning, teaching and assessment. Springer.

Dörner, D. (1978). Self-reflection and problem-solving. In F. Klix (Ed.), Human and artificial intelligence. Deutscher Verlag.

Ghiselli, E. E. (1963). Intelligence and managerial success. Psychology Report, 121, 41–49.

Gutierrez de Blume, A. P., Montoya, D. M. (2021). Differences in metacognitive skills among undergraduate students in education, psychology, and medicine. Revista Colombiana de Psicología, 30(1), 111–130. https://doi.org/10.15446/rcp.v30n1.88146

Engeström Y., Miettinen R., Punamäki R. (1999). Perspectives on Activity Theory. Cambridge University Press.

Ferrari, M., McBride, H. (2011). Mind, brain, and education: The birth of a new science. Learning, 5(1), 85–100. https://doi.org/10.36510/learnland.v5i1.533

Flavell, J. H., Miller, Р. Н., Miller, S. A. (1993). Cognitive development (3rd edition). Prentice Hall.

Kluwe, R. H. (1982). Cognitive knowledge and executive control: Metacognition. In D. R. Griffin (Ed.), Animal mind – human mind, 21, Springer. https://doi.org/10.1007/978-3-642-68469-2_12

Lefebvre-Pinard, M. (1983). Understanding and auto-control of cognitive functions: Implications for the relationship between cognition and behavior. International Journal of Behavioral Development, 6(1), 15–35. https://doi.org/10.1177/016502548300600102

Mariano, G. J., Figliano, F. J., Dozier, A. (2017). Using metacognitive strategies in the STEM field. In E. Railean, A. Elçi, (Eds.), Metacognition and successful learning strategies in higher education. IGI Global. https://doi.org/10.4018/978-1-5225-2218-8.ch012

Metcalfe, J., Eich, T. S. (2019). Memory and truth: Correcting errors with true feedback versus overwriting correct answers with errors. Cognitive Research: Principles and Implications, 4. https://doi.org/10.1186/s41235-019-0153-8

Metcalfe, J., Shimamura, A. P. (1994). Metacognition: Knowing about Knowing. MIT Press.

Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51(2), 102–116. https://doi.org/10.1037/0003-066X.51.2.102

Kolb, D. A., Kolb, I. A. & McIntryre, J. M. (1984). Organizational psychology. Prentice Hall.

Prather, J., Pettit, R., McMurry, K., Peters, A., Homer, J., Cohen, M. (2018, August). Metacognitive difficulties faced by novice programmers in automated assessment tools. Proceedings of the 2018 ACM Conference on International Computing Education Research, 41–50. https://doi.org/10.1145/3230977.3230981

Rum, S., Ismail, M. A. (2016). Metacognitive awareness assessment and introductory computer programming course achievement at university. The International Arab Journal of Information Technology, 13(6), 667–676.

Schraw, G., Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460–475. https://doi.org/10.1006/ceps.1994.1033

Splichal, J. M., Oshima, J., Oshima, R. (2018). Regulation of collaboration in project-based learning mediated by CSCL scripting reflection. Computers & Education, 125, 132–145. https://doi.org/10.1016/j.compedu.2018.06.003

Tobias, S., Everson, H. T. (2002). Knowing what you know and what you don’t: Further research on metacognitive knowledge monitoring. College Entrance Examination.

Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26(1), 1–12. https://doi.org/10.1037/H0080017

Welch, P., Young, L., Johnson, P., Lindsay, D. (2018). Metacognitive aware-ness and the link with undergraduate examination performance and clinical reasoning. MedEdPublish, 7(2). https://doi.org/10.15694/mep.2018.0000100.1

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Anatolii V. Karpov, Aleksandr A. Karpov, Yuliya V. Filippova