Estimation of magnitudes and numerosity in different formats of stimulus presentation: the numerical ratio effect
PDF
PDF (Russian)

Keywords

оценка величин
оценка размеров
оценка количества
чувство числа
несимволическая репрезентация
эффект пропорции
эффект конгруэнтности
визуальные параметры
несимволическое сравнение
формат предъявления

Abstract

Introduction. Several researchers discuss the possibility of existence of a common mental
system responsible for the estimation of both discrete numerosities and continuous magnitudes.
The numerical ratio effect observed during comparison tasks is one of the evidences of an
existence of such system. It manifests itself in an increase in response time and a decrease in
accuracy as the numerical proportion between the compared arrays of objects or magnitudes
increases. This study investigated the numerical ratio effect for different types of tests and stimulus
presentation formats in order to explore the interrelationships between systems of magnitude
and numerosity estimation. Methods. The sample consisted of 83 students (20% were men, the
average age was 20.34 years). The participants of the study performed nonsymbolic comparison
tasks, arears comparison task and comparison of nonsymbolic quantity with symbolic numbers
task (nonsymbolic – symbolic comparison test). Two formats of stimulus presentation were used
during the nonsymbolic comparison test: separate/homogeneous and mixed/heterogeneous. The
accuracy of estimation and numerical ratio effect were calculated for each test. Results. The
numerical ratio effect was significant in the nonsymbolic comparison tests (for both formats of
stimulus presentation) and in the nonsymbolic-symbolic comparison test, but was not significant
in the areas comparison test. Numerical ratio effects for different tests do not correlate with
each other. It was also shown that the accuracy of the estimation of magnitudes correlates with
the results of the nonsymbolic comparison test, and this relationship was stronger for the mixed/
heterogeneous format. Discussion. Results of this study demonstrated that the relationship between
magnitude and discrete numerosity estimation systems can vary under different conditions of
stimulus presentation. It makes possible to refine the existing theoretical models describing
functioning of the Approximate Number System. The obtained results cannot be fully explained
by the theory of a unified numerosity/magnitude estimation system. It was shown, however, that
the magnitude estimation system does in fact contribute to the estimation of discrete numerosity. 

https://doi.org/10.21702/rpj.2023.1.5
PDF
PDF (Russian)

References

Кузьмина, Ю. В., Захаров, И. М., Исматуллина, В. И., Лобаскова, М. М., Лысенкова, И. А., Маракшина, Ю. А., & Малых, С. Б. (2019). Интуитивное чувство числа: две системы оценки количества. Теоретическая и экспериментальная психология, 12(2), 19–38.

Кузьмина, Ю. В., Лобаскова, М. М., Маракшина, Ю. А., Захаров, И. М., Исматуллина, В. И., & Малых, С. Б. (2020). Связь точности несимволической репрезентации количества с оценкой визуальных параметров в разных условиях предъявления стимулов. Теоретическая и экспериментальная психология, 13(3), 6–21.

Akobeng, A. K. (2016). Understanding type I and type II errors, statistical power and sample size. Acta Pediatrica, 105(6), 605–609. https://doi.org/10.1111/apa.13384

Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1831–1840. https://doi.org/10.1098/rstb.2009.0028

Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., Cohen Kadosh, R., & Walsh, V. (2013). Transfer of Cognitive Training across Magnitude Dimensions Achieved with Concurrent Brain Stimulation of the Parietal Lobe. Journal of Neuroscience, 33(37), 14899–14907. https://doi.org/10.1523/JNEUROSCI.1692-13.2013

Caruso, J. C. (2004). A Comparison of the Reliabilities of Four Types of Difference Scores for Five Cognitive Assessment Batteries. European Journal of Psychological Assessment, 20(3), 166–171. https://doi.org/10.1027/1015-5759.20.3.166

Chesney, D. (2018). Numerical distance effect size is a poor metric of approximate number system acuity. Attention, Perception, & Psychophysics, 80(5), 1057–1063.

Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177–184. https://doi.org/10.1016/j.actpsy.2015.09.007

Creatore, C., Sabathiel, S., & Solstad, T. (2021). Learning exact enumeration and approximate estimation in deep neural network models. Cognition, 215, 104815. https://doi.org/10.1016/j.cognition.2021.104815

Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147. https://doi.org/10.1016/S1364-6613(03)00055-X

Dietrich, J. F., Huber, S., & Nuerk, H.-C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS) – a research review. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00295

Dormal, V., & Pesenti, M. (2007). Numerosity-Length Interference: A Stroop Experiment. Experimental Psychology, 54(4), 289–297. https://doi.org/10.1027/1618-3169.54.4.289

Dormal, V., Andres, M., & Pesenti, M. (2012). Contribution of the right intraparietal sulcus to numerosity and length processing: An fMRI-guided TMS study. Cortex, 48(5), 623–629. https://doi.org/10.1016/j.cortex.2011.05.019

Fornaciai, M., Brannon, E. M., Woldorff, M. G., & Park, J. (2017). Numerosity processing in early visual cortex. NeuroImage, 157, 429–438. https://doi.org/10.1016/j.neuroimage.2017.05.069

Gebuis, T., & Reynvoet, B. (2012). The Role of Visual Information in Numerosity Estimation. PLoS ONE, 7(5), e37426. https://doi.org/10.1371/journal.pone.0037426

Gebuis, T., Cohen Kadosh, R., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35. https://doi.org/10.1016/j.actpsy.2016.09.003

Goffin, C., & Ansari, D. (2019). How Are Symbols and Nonsymbolic Numerical Magnitudes Related? Exploring Bidirectional Relationships in Early Numeracy: Bidirectionality in Early Numeracy. Mind, Brain, and Education, 13(3), 143–156. https://doi.org/10.1111/mbe.12206

Hendryckx, C., Guillaume, M., Beuel, A., Van Rinsveld, A., & Content, A. (2021). Mutual influences between numerical and non-numerical quantities in comparison tasks. Quarterly Journal of Experimental Psychology, 74(5), 843–852. https://doi.org/10.1177/1747021820981876

Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599–19604. https://doi.org/10.1073/pnas.0609485103

Kuzmina, Y., & Malykh, S. (2022). The effect of visual parameters on nonsymbolic numerosity estimation varies depending on the format of stimulus presentation. Journal of Experimental Child Psychology, 224, 105514.

Leibovich, T., & Henik, A. (2014). Comparing Performance in Discrete and Continuous Comparison Tasks. Quarterly Journal of Experimental Psychology, 67(5), 899–917. https://doi.org/10.1080/17470218.2013.837940

Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From «sense of number» to «sense of magnitude»: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164. https://doi.org/10.1017/S0140525X16000960

Leibovich-Raveh, T., Stein, I., Henik, A., & Salti, M. (2018). Number and Continuous Magnitude Processing Depends on Task Goals and Numerosity Ratio. Journal of Cognition, 1(1), 19. https://doi.org/10.5334/joc.22

Lyons, I. M., Nuerk, H.-C., & Ansari, D. (2015). Rethinking the implications of numerical ratio effects for understanding the development of representational precision and numerical processing across formats. Journal of Experimental Psychology: General, 144(5), 1021–1035. https://doi.org/10.1037/xge0000094

Maloney, E. A., Risko, E. F., Preston, F., Ansari, D., & Fugelsang, J. (2010). Challenging the reliability and validity of cognitive measures: The case of the numerical distance effect. Acta Psychologica, 134(2), 154–161. https://doi.org/10.1016/j.actpsy.2010.01.006

Nieder, A. (2016). The neuronal code for number. Nature Reviews Neuroscience, 17(6), 366–382. https://doi.org/10.1038/nrn.2016.40

Nieder, A., & Miller, E. K. (2003). Coding of Cognitive Magnitude. Neuron, 37(1), 149–157. https://doi.org/10.1016/S0896-6273(02)01144-3

Odic, D. (2018). Children’s intuitive sense of number develops independently of their perception of area, density, length, and time. Developmental Science, 21(2), e12533. https://doi.org/10.1111/desc.12533

Odic, D., & Halberda, J. (2015). Eye movements reveal distinct encoding patterns for number and cumulative surface area in random dot arrays. Journal of Vision, 15(15), 5. https://doi.org/10.1167/15.15.5

Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2016). Rapid and Direct Encoding of Numerosity in the Visual Stream. Cerebral Cortex, bhv017. https://doi.org/10.1093/cercor/bhv017

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 53(2), 293–305. https://doi.org/10.1016/j.neuron.2006.11.022

Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1), 50–57. https://doi.org/10.1016/j.actpsy.2012.02.008

Ross, J., & Burr, D. C. (2010). Vision senses number directly. Journal of vision, 10(2), 1–8.

Sasanguie, D., De Smedt, B., & Reynvoet, B. (2017). Evidence for distinct magnitude systems for symbolic and non-symbolic number. Psychological Research, 81(1), 231–242.

Sasanguie, D., Defever, E., Van den Bussche, E., & Reynvoet, B. (2011). The reliability of and the relation between non-symbolic numerical distance effects in comparison, same-different judgments and priming. Acta Psychologica, 136(1), 73–80. https://doi.org/10.1016/j.actpsy.2010.10.004

Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47(5), 609–612. https://doi.org/10.1016/j.jrp.2013.05.009

Smets, K., Moors, P., & Reynvoet, B. (2016). Effects of Presentation Type and Visual Control in Numerosity Discrimination: Implications for Number Processing? Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00066

Sokolowski, H. M., Fias, W., Mousa, A., & Ansari, D. (2017). Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. NeuroImage, 146, 376–394. https://doi.org/10.1016/j.neuroimage.2016.10.028

Testolin, A., Zou, W. Y., & McClelland, J. L. (2020). Numerosity discrimination in deep neural networks: Initial competence, developmental refinement and experience statistics. Developmental Science, 23(5). https://doi.org/10.1111/desc.12940

Van Rinsveld, A., Guillaume, M., Kohler, P. J., Schiltz, C., Gevers, W., & Content, A. (2020). The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of the National Academy of Sciences, 117(11), 5726–5732. https://doi.org/10.1073/pnas.1917849117

Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. https://doi.org/10.1016/j.tics.2003.09.002

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Yulia V. Kuzmina, Yulia A. Marakshina, Marina M. Lobaskova, Sergey B. Malykh