Abstract
Introduction. The existing speech production schemes do not fully reflect the interaction of speech perception systems and one’s own internal speech. The study is aimed at comparing the connection between internal pronunciation and phonemic perception using psychophysiological methods. Methods. Twenty-five people took part in the EEG study. The subjects were offered auditory stimuli, and then it was necessary to internally pronounce the given phonemes or syllables with the same intonation and pronunciation as in external speech. Functional analysis of variance was used to process the results. An fMRI study was also conducted, and 30 healthy right-handed subjects took part in it. The respondents were also offered auditory stimuli, and the background, listening to the material, and listening with subsequent internal pronouncing of a given stimulus was recorded. The results were processed using a program for statistical parametric mapping and then analyzed by group statistics applying a one-sample Student t-test. Results. During the EEG investigation, intervals of significant differences in the structure of the evoked potential of internal pronunciation and phonemic perception were found. During the fMRI study, we obtained data that indicate both the process of phonemic perception and intentional internal pronunciation. Discussion. Differences in brain structures activity during internal pronunciation and perception were analyzed. Based on the data obtained by us and theoretical analysis results, a scheme of phonemic perception and internal pronunciation was proposed. This scheme represents not only the interaction of the processes of perception and speech generation but also shows the influence of articulations on the internal speech process.
References
Ardila, A., Bernal, B., & Rosselli, M. (2015). Language and visual perception associations: Meta-analytic connectivity modeling of Brodmann area 37. Behavioural Neurology, 2015. https://doi.org/10.1155/2015/565871
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/J.2517-6161.1995.TB02031.X
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2002a). Modality independence of word comprehension. Human Brain Mapping, 16(4), 251–261. https://doi.org/10.1002/hbm.10054
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2002b). Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage, 16(1), 7–22. https://doi.org/10.1006/nimg.2002.1081
Chou, T.-L., Booth, J. R., Bitan, T., Burman, D. D., Bigio, J. D., Cone, N. E., Lu, D. & Cao, F. (2006). Developmental and skill effects on the neural correlates of semantic processing to visually presented words. Human Brain Mapping, 27(11), 915–924. https://doi.org/10.1002/hbm.20231
De Carli, D., Garreffa, G., Colonnese, C., Giulietti, G., Labruna, L., Briselli, E., Ken, S., Macrì, M. A., & Maraviglia, B. (2007). Identification of activated regions during a language task. Magnetic Resonance Imaging, 25(6), 933–938. https://doi.org/10.1016/j.mri.2007.03.031
Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283–321. https://doi.org/10.1037/0033-295X.93.3.283
Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya, C. J., Glover, G. H., & Gabrieli, J. D. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: A functional MRI study of task difficulty and process specificity. The Journal of Neuroscience, 15(9), 5870–5878. https://doi.org/10.1523/JNEUROSCI.15-09-05870.1995
Devlin, J. T., Matthews, P. M., & Rushworth, M. F. S. (2003). Semantic processing in the left inferior prefrontal cortex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 15(1), 71–84. https://doi.org/10.1162/089892903321107837
Flowers, D. L., Jones, K., Noble, K., VanMeter, J., Zeffiro, T. A., Wood, F. B., & Eden, G. F. (2004). Attention to single letters activates left extrastriate cortex. NeuroImage, 21(3), 829–839. https://doi.org/10.1016/j.neuroimage.2003.10.002
Fox, P. T., Ingham, R. J., Ingham, J. C., Zamarripa, F., Xiong, J.-H., & Lancaster, J. L. (2000). Brain correlates of stuttering and syllable production: A PET performance-correlation analysis. Brain, 123(10), 1985–2004. https://doi.org/10.1093/brain/123.10.1985
Garn, C. L., Allen, M. D., & Larsen, J. D. (2009). An fMRI study of sex differences in brain activation during object naming. Cortex, 45(5), 610–618. https://doi.org/10.1016/j.cortex.2008.02.004
Gorelov, I. N., Sedov, K. F. (2001). Fundamentals of psycholinguistics. Textbook (3rd ed., rev. & add.). Labyrint. (in Russ).
Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144. https://doi.org/10.1016/j.cognition.2002.06.001
Kiyosawa, M., Inoue, C., Kawasaki, T., Tokoro, T., Ishii, K., Ohyama, M., Senda, M., & Soma, Y. (1996). Functional neuroanatomy of visual object naming: A PET study. Graefe’s Archive for Clinical and Experimental Ophthalmology, 234, 110–115. https://doi.org/10.1007/BF00695250
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1–38. https://doi.org/10.1017/S0140525X99001776
McDermott, K. B., Petersen, S. E., Watson, J. M., & Ojemann, J. G. (2003). A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia, 41(3), 293–303. https://doi.org/10.1016/s0028-3932(02)00162-8
Morais, J., & Kolinsky, R. (1994). Perception and awareness in phonological processing: The case of the phoneme. Cognition, 50(1–3), 287–297. https://doi.org/10.1016/0010-0277(94)90032-9
Nakamura, K., Kawashima, R., Sugiura, M., Kato, T., Nakamura, A., Hatano, K., Nagumo, S., Kubota, K., Fukuda, H., Ito, K., & Kojima, S. (2001). Neural substrates for recognition of familiar voices: A PET study. Neuropsychologia, 39(10), 1047–1054. https://doi.org/10.1016/s0028-3932(01)00037-9
Oppenheim, G. M., & Dell, G. S. (2008). Inner speech slips exhibit lexical bias, but not the phonemic similarity effect. Cognition, 106(1), 528–537. https://doi.org/10.1016/j.cognition.2007.02.006
Oppenheim, G. M., & Dell, G. S. (2010). Motor movement matters: The flexible abstractness of inner speech. Memory & Cognition, 38, 1147–1160. https://doi.org/10.3758/MC.38.8.1147
Patel, R. S., Bowman, F. D., & Rilling, J. K. (2006). Determining hierarchical functional networks from auditory stimuli fMRI. Human Brain Mapping, 27(5), 462–470. https://doi.org/10.1002/hbm.20245
Plotkin, V. Ya. (1993). Phonological quanta. Siberian publishing company VO «Nauka». (in Russ).
Robinson, J. L., Barron, D. S., Kirby, L. A. J., Bottenhorn, K. L., Hill, A. C., Murphy, J. E., Katz, J. S., Salibi, N., Eickhoff, S. B., & Fox, P. T. (2015). Neurofunctional topography of the human hippocampus. Human Brain Mapping, 36(12), 5018–5037. https://doi.org/10.1002/hbm.22987
Sarmiento, L. C., Lorenzana, P., Cortes, C. J., Arcos, W. J., Bacca, J. A., & Tovar, A. (2014). Brain computer interface (BCI) with EEG signals for automatic vowel recognition based on articulation mode. In 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC) (pp. 1–4). https://doi.org/10.1109/brc.2014.6880997
Scott, M., Yeung, H. H., Gick, B., & Werker, J. F. (2013). Inner speech captures the perception of external speech. The Journal of the Acoustical Society of America, 133(4). https://doi.org/10.1121/1.4794932
Shuster, L. I., & Lemieux, S. K. (2005). An fMRI investigation of covertly and overtly produced mono- and multisyllabic words. Brain and Language, 93(1), 20–31. https://doi.org/10.1016/j.bandl.2004.07.007
Vartanov, A. V., Suyuncheva, A. R., Shevchevko, A. O. (2021). Mechanisms of internal pronunciation and perception in different types of external initiation. Intelligent systems. Theory and applications, 25(4), 302–306. (in Russ.).
Whitney, C., Weis, S., Krings, T., Huber, W., Grossman, M., & Kircher, T. (2009). Task-dependent modulations of prefrontal and hippocampal activity during intrinsic word production. Journal of Cognitive Neuroscience, 21(4), 697–712. https://doi.org/10.1162/jocn.2009.21056
Ziegler, W. (2016). Chapter 1 – The Phonetic Cerebellum: Cerebellar Involvement in Speech Sound Production. The Linguistic Cerebellum, 1–32. https://doi.org/10.1016/B978-0-12-801608-4.00001-3
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Shevchenko, A.O., Vartanov, A.V.