Conscious Perception: Discreteness vs. Continuity
PDF
PDF (Russian)

Keywords

discrete perception
visual perception
perceptual moment
postdictive effects
integration window
consciousness
negative choice
priming effects
negative priming
EEG oscillations

Abstract

Introduction. Is perception discrete or continuous? This question has a long history, but in the light of experimental data obtained in recent years, it is gaining relevance again. The available models rely on different understandings of discreteness, and they highlight different units of discrete perception. Theoretical justification. This article reviews the development of discrete models of perception and discusses the various theoretical evidence for discreteness of perception. Results and discussion. The article provides a review of experimental studies supporting discrete models and their general critique. The results of the latest studies support the idea that it is precisely conscious perception that is discrete, while unconscious information processing can be continuous or carried out with higher temporal resolution. The authors compare two popular contemporary approaches to discrete perception. One approach assumes that the discrete unit of perception is relatively small and related to temporal resolution, but that it is not universal - discretization can occur at different frequencies, for example, for different modalities. The second approach associate’s discretization with the need to calculate the most meaningful interpretation of incoming data. The discrete unit in this approach (the time window of unconscious processing) is universal, but its duration is not fixed and depends on the nature of incoming data. Authors also propose an alternative approach based on V. M. Allakhverdov's negative choice theory, which implies the existence of the unconscious processing window, the duration of which is not constant. This approach suggests a novel idea that the duration of the window depends on the complexity of control operations, the goal of which is to select information for conscious processing. Authors discuss the capabilities of this approach to explain the temporal dynamics of priming and the attentional blink effects where the difference in the duration of discrete window can be seen as the manifestation of the general logic of discretization.

https://doi.org/10.21702/rpj.2022.4.2
PDF
PDF (Russian)

References

Akyürek, E. G., & Wolff, M. J. (2016). Extended temporal integration in rapid serial visual presentation: Attentional control at Lag 1 and beyond. Acta Psychologica, 168, 50–64. https://doi.org/10.1016/j.actpsy.2016.04.009

Alamia, A., & VanRullen, R. (2019). Alpha oscillations and traveling waves: Signatures of predictive coding? PLoS Biology, 17(10). https://doi.org/10.1371/journal.pbio.3000487

Allakhverdov V. M. The mysterious charm of consciousness: Conversations about eternal problems, or an invitation to the absurd. Collected works in seven volumes. Volume 7 (in Russ.).

Allakhverdov, V. M. (2000). Consciousness as a paradox. DNK (in Russ.).

Allakhverdov, V. M., Filippova, M. G., Gershkovich, V. A., Karpinskaia, V. Y., Scott, T. V., & Vladykina, N. P. (2019). Consciousness, learning, and control: On the path to a theory. In A. Cleeremans, V. Allakhverdov, & M. Kuvaldina (Eds.), Implicit learning: 50 years on (pp. 71–107). Routledge. https://doi.org/10.4324/9781315628905

Allport, D. A. (1968). Phenomenal simultaneity and the perceptual moment hypothesis. British Journal of Psychology, 59(4), 395–406. https://doi.org/10.1111/j.2044-8295.1968.tb01154.x

Atas, A., & Cleeremans, A. (2015). The temporal dynamic of automatic inhibition of irrelevant actions. Journal of Experimental Psychology. Human Perception and Performance, 41(2), 289–305. https://doi.org/10.1037/a0038654

Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge University Press.

Bachmann, T., Põder, E., & Luiga, I. (2004). Illusory reversal of temporal order: The bias to report a dimmer stimulus as the first. Vision Research, 44(3), 241–246. https://doi.org/10.1016/j.visres.2003.10.012

Boy, F., & Sumner, P. (2010). Tight coupling between positive and reversed priming in the masked prime paradigm. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 892–905. https://doi.org/10.1037/a0017173

Breitmeyer, B. G., & Ogmen, H. (2000). Recent models and findings in visual backward masking: A comparison, review, and update. Perception & Psychophysics, 62, 1572–1595. https://doi.org/10.3758/BF03212157

Burr, D. C., & Santoro, L. (2001). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research, 41(15), 1891–1899. https://doi.org/10.1016/S0042-6989(01)00072-4

Busch, N. A., & VanRullen, R. (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences, 107(37), 16048–16053. https://doi.org/10.1073/pnas.1004801107

Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869–7876. https://doi.org/10.1523/JNEUROSCI.0113-09.2009

Callaway III, E., & Yeager, C. L. (1960). Relationship between reaction time and electroencephalographic alpha phase. Science, 132(3441), 1765–1766. https://doi.org/10.1126/science.132.3441.1765

Chakravarthi, R., & VanRullen, R. (2012). Conscious updating is a rhythmic process. Proceedings of the National Academy of Sciences, 109(26), 10599–10604. https://doi.org/10.1073/pnas.1121622109

Chota, S. (2020). The causal role of neural oscillations in attentional and perceptual sampling mechanisms (Doctoral dissertation). Université Paul Sabatier, Toulouse III. https://tel.archives-ouvertes.fr/tel-03117853/document

Chota, S., & VanRullen, R. (2019). Visual entrainment at 10 Hz causes periodic modulation of the flash lag illusion. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00232

Chota, S., Marque, P., & VanRullen, R. (2021). Occipital Alpha-TMS causally modulates temporal order judgements: Evidence for discrete temporal windows in vision. NeuroImage, 237. https://doi.org/10.1016/j.neuroimage.2021.118173

Cravo, A. M., Santos, K. M., Reyes, M. B., Caetano, M. S., & Claessens, P. M. E. (2015). Visual causality judgments correlate with the phase of alpha oscillations. Journal of Cognitive Neuroscience, 27(10), 1887–1894. https://doi.org/10.1162/jocn_a_00832

Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119–126. https://doi.org/10.1038/nn0203-119

D’Angelo, M. C., & Milliken, B. (2012). Context-specific control in the single-prime negative-priming procedure. Quarterly Journal of Experimental Psychology, 65(5), 887–910. https://doi.org/10.1080/17470218.2011.630478

Dainton, B. (2018). Temporal consciousness. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2018 Edition). https://plato.stanford.edu/archives/win2018/entries/consciousness-temporal/

Dehaene, S. (1993). Temporal oscillations in human perception. Psychological Science, 4(4), 264–270. https://doi.org/10.1111/j.1467-9280.1993.tb00273.x

Di Lollo, V., Kawahara, J.-I., Shahab Ghorashi, S. M., & Enns, J. T. (2005). The attentional blink: Resource depletion or temporary loss of control? Psychological Research, 69, 191–200. https://doi.org/10.1007/s00426-004-0173-x

Doerig, A., Scharnowski, F., & Herzog, M. H. (2019). Building perception block by block: A response to Fekete et al. Neuroscience of Consciousness, 2019(1). https://doi.org/10.1093/nc/niy012

Drewes, J., & VanRullen, R. (2011). This is the rhythm of your eyes: The phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. Journal of Neuroscience, 31(12), 4698–4708. https://doi.org/10.1523/JNEUROSCI.4795-10.2011

Drissi-Daoudi, L., Doerig, A., & Herzog, M. H. (2019). Feature integration within discrete time windows. Nature Communications, 10. https://doi.org/10.1038/s41467-019-12919-7

Drissi-Daoudi, L., Öğmen, H., & Herzog, M. H. (2021). Features integrate along a motion trajectory when object integrity is preserved. Journal of Vision, 21(12), 4. https://doi.org/10.1167/jov.21.12.4

Drissi-Daoudi, L., Öğmen, H., Herzog, M. H., & Cicchini, G. M. (2020). Object identity determines trans-saccadic integration. Journal of Vision, 20(7). https://doi.org/10.1167/jov.20.7.33

Dugué, L., Marque, P., & VanRullen, R. (2015). Theta oscillations modulate attentional search performance periodically. Journal of Cognitive Neuroscience, 27(5), 945–958. https://doi.org/10.1162/jocn_a_00755

Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, & Psychophysics, 71, 1683–1700. https://doi.org/10.3758/APP.71.8.1683

Eimer, M. (1999). Facilitatory and inhibitory effects of masked prime stimuli on motor activation and behavioural performance. Acta Psychologica, 101(2–3), 293–313. https://doi.org/10.1016/S0001-6918(99)00009-8

Elliott, M. A., & Giersch, A. (2016). What happens in a moment. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01905

Fakche, C., VanRullen, R., Marque, P., & Dugué, L. (2022). α Phase-amplitude tradeoffs predict visual perception. eNeuro, 9(1). https://doi.org/10.1523/ENEURO.0244-21.2022

Falikman, M. V. (2001). Dynamics of attention in the context of rapid serial presentation of visual stimuli. PhD thesis. Lomonosov MSU (in Russ.).

Fekete, T., Van de Cruys, S., Ekroll, V., & van Leeuwen, C. (2018). In the interest of saving time: A critique of discrete perception. Neuroscience of Consciousness, 2018(1). https://doi.org/10.1093/nc/niy003

Ferlazzo, F., Lucido, S., Di Nocera, F., Fagioli, S., & Sdoia, S. (2007). Switching between goals mediates the attentional blink effect. Experimental Psychology, 54(2), 89–98. https://doi.org/10.1027/1618-3169.54.2.89

Fiebelkorn, I. C., Snyder, A. C., Mercier, M. R., Butler, J. S., Molholm, S., & Foxe, J. J. (2013). Cortical cross-frequency coupling predicts perceptual outcomes. Neuroimage, 69, 126–137. https://doi.org/10.1016/j.neuroimage.2012.11.021

Filippova, M. G., & Kostina, D. (2020). Dynamics of priming-effect for subliminally presented ambiguous pictures. Journal of Cognitive Psychology, 32(2), 199–213. https://doi.org/10.1080/20445911.2019.1708916

Frings, C., & Eder, A. B. (2009). The time-course of masked negative priming. Experimental Psychology, 56(5), 301–306. https://doi.org/10.1027/1618-3169.56.5.301

Frings, C., & Wentura, D. (2005). Negative priming with masked distractor-only prime trials: Awareness moderates negative priming. Experimental Psychology, 52(2). https://doi.org/10.1027/1618-3169.52.2.131

Geldard, F. A., & Sherrick, C. E. (1972). The cutaneous «rabbit»: A perceptual illusion. Science, 178(4057), 178–179. https://doi.org/10.1126/science.178.4057.178

Haegens, S., & Golumbic, E. Z. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience & Biobehavioral Reviews, 86, 150–165. https://doi.org/10.1016/j.neubiorev.2017.12.002

Harter, M. R. (1967). Excitability cycles and cortical scanning: A review of two hypotheses of central intermittency in perception. Psychological Bulletin, 68(1), 47–58. https://doi.org/10.1037/h0024725

Herzog, M. H., Drissi-Daoudi, L., & Doerig, A. (2020). All in good time: Long-lasting postdictive effects reveal discrete perception. Trends in Cognitive Sciences, 24(10), 826–837. https://doi.org/10.1016/j.tics.2020.07.001

Herzog, M. H., Kammer, T., & Scharnowski, F. (2016). Time slices: What is the duration of a percept? PLoS Biology, 14(4). https://doi.org/10.1371/journal.pbio.1002493

Hogendoorn, H. (2020). Motion extrapolation in visual processing: Lessons from 25 years of flash-lag debate. Journal of Neuroscience, 40(30), 5698–5705. https://doi.org/10.1523/JNEUROSCI.0275-20.2020

Kolers, P. A., & von Grünau, M. (1976). Shape and color in apparent motion. Vision Research, 16(4), 329–335. https://doi.org/10.1016/0042-6989(76)90192-9

Lindsley, D. B. (1952). Psychological phenomena and the electroencephalogram. Electroencephalography and Clinical Neurophysiology, 4(4), 443–456. https://doi.org/10.1016/0013-4694(52)90075-8

Lingnau, A., & Vorberg, D. (2005). The time course of response inhibition in masked priming. Perception & Psychophysics, 67, 545–557. https://doi.org/10.3758/BF03193330

Luo, C., VanRullen, R., & Alamia, A. (2021). Conscious perception and perceptual echoes: A binocular rivalry study. Neuroscience of Consciousness, 2021(1). https://doi.org/10.1093/nc/niab007

Makarov, I. M., & Gorbunova, E. S. (2020). Target-target perceptual similarity within the attentional blink. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.551890

Manassi, M., & Whitney, D. (2022). Illusion of visual stability through active perceptual serial dependence. Science Advances, 8(2). https://doi.org/10.1126/sciadv.abk2480

Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725–2732. https://doi.org/10.1523/JNEUROSCI.3963-08.2009

Miller, J. (1988). Discrete and continuous models of human information processing: Theoretical distinctions and empirical results. Acta Psychologica, 67(3), 191–257. https://doi.org/10.1016/0001-6918(88)90013-3

Milliken, B., Joordens, S., Merikle, P. M., & Seiffert, A. E. (1998). Selective attention: A reevaluation of the implications of negative priming. Psychological Review, 105(2), 203–229. https://doi.org/10.1037/0033-295X.105.2.203

Milton, A., & Pleydell-Pearce, C. W. (2016). The phase of pre-stimulus alpha oscillations influences the visual perception of stimulus timing. NeuroImage, 133, 53–61. https://doi.org/10.1016/j.neuroimage.2016.02.065

Morrow, A., & Samaha, J. (2022). No evidence for a single oscillator underlying discrete visual percepts. European Journal of Neuroscience, 55(11–12), 3054–3066. https://doi.org/10.1111/ejn.15362

Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256–257. https://doi.org/10.1038/370256b0

Noguchi, Y., Shimojo, S., Kakigi, R., & Hoshiyama, M. (2007). Spatial contexts can inhibit a mislocalization of visual stimuli during smooth pursuit. Journal of Vision, 7. https://doi.org/10.1167/7.13.13

Ortells, J. J., Abad, M. J. F., Noguera, C., & Lupiáñez, J. (2001). Influence of prime-probe stimulus onset asynchrony and prime precuing manipulations on semantic priming effects with words in a lexical-decision task. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 75–91. https://doi.org/10.1037/0096-1523.27.1.75

Ortells, J. J., Fox, E., Noguera, C., & Abad, M. J. F. (2003). Repetition priming effects from attended vs. ignored single words in a semantic categorization task. Acta Psychologica, 114(2), 185–210. https://doi.org/10.1016/j.actpsy.2003.08.002

Otto, T. U., Ögmen, H., & Herzog, M. H. (2009). Feature integration across space, time, and orientation. Journal of Experimental Psychology: Human Perception and Performance, 35(6), 1670–1686. https://doi.org/10.1037/a0015798

Pilz, K. S., Zimmermann, C., Scholz, J., & Herzog, M. H. (2013). Long-lasting visual integration of form, motion, and color as revealed by visual masking. Journal of Vision, 13, 12. https://doi.org/10.1167/13.10.12

Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56–61. https://doi.org/10.1016/S1364-6613(97)01008-5

Pöppel, E. (2009). Pre-semantically defined temporal windows for cognitive processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1887–1896. https://doi.org/10.1098/rstb.2009.0015

Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–860. https://doi.org/10.1037//0096-1523.18.3.849

Ronconi, L., Busch, N. A., & Melcher, D. (2018). Alpha-band sensory entrainment alters the duration of temporal windows in visual perception. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-29671-5

Ronconi, L., Oosterhof, N. N., Bonmassar, C., & Melcher, D. (2017). Multiple oscillatory rhythms determine the temporal organization of perception. Proceedings of the National Academy of Sciences, 114(51), 13435–13440. https://doi.org/10.1073/pnas.1714522114

Samaha, J., & Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985–2990. https://doi.org/10.1016/j.cub.2015.10.007

Scharnowski, F., Rüter, J., Jolij, J., Hermens, F., Kammer, T., & Herzog, M. H. (2009). Long-lasting modulation of feature integration by transcranial magnetic stimulation. Journal of Vision, 9(6), 1. https://doi.org/10.1167/9.6.1

Schlaghecken, F., & Eimer, M. (2000). A central-peripheral asymmetry in masked priming. Perception & Psychophysics, 62, 1367–1382. https://doi.org/10.3758/BF03212139

Schneider, K. A. (2018). The flash-lag, Fröhlich and related motion illusions are natural consequences of discrete sampling in the visual system. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01227

Schulz, D. P., Schulz, S. E. (2002). The history of modern psychology (Ed. of A. D. Nasledov). SPb., Evraziya (in Russ.).

Shallice, T. (1964). The detection of change and the perceptual moment hypothesis. British Journal of Statistical Psychology, 17(2), 113–135. https://doi.org/10.1111/j.2044-8317.1964.tb00254.x

Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1997). The attentional blink. Trends in Cognitive Sciences, 1(8), 291–296. https://doi.org/10.1016/S1364-6613(97)01094-2

Sherman, M. T., Kanai, R., Seth, A. K., & VanRullen, R. (2016). Rhythmic influence of top–down perceptual priors in the phase of prestimulus occipital alpha oscillations. Journal of Cognitive Neuroscience, 28(9), 1318–1330. https://doi.org/10.1162/jocn_a_00973

Sheth, B. R., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nature Neuroscience, 3, 489–495. https://doi.org/10.1038/74865

Shimojo, S. (2014). Postdiction: Its implications on visual awareness, hindsight, and sense of agency. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00196

Snir, G., & Yeshurun, Y. (2017). Perceptual episodes, temporal attention, and the role of cognitive control: Lessons from the attentional blink. Progress in Brain Research, 236, 53–73. https://doi.org/10.1016/bs.pbr.2017.07.008

Sokoliuk, R., & VanRullen, R. (2019). Perceptual illusions caused by discrete sampling. In V. Arstila, A. Bardon, S. Power, A. Vatakis (Eds.), The Illusions of Time (pp. 315–338). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-22048-8_17

Stiles, N. R., Li, M., Levitan, C. A., Kamitani, Y., & Shimojo, S. (2018). What you saw is what you will hear: Two new illusions with audiovisual postdictive effects. PloS One, 13(10). https://doi.org/10.1371/journal.pone.0207894

Stroud, J. M. (1967). The fine structure of psychological time. Annals of the New York Academy of Sciences, 138(2), 623–631. https://doi.org/10.1111/j.1749-6632.1967.tb55012.x

Sun, L., Frank, S. M., Hartstein, K. C., Hassan, W., & Tse, P., U. (2017). Back from the future: Volitional postdiction of perceived apparent motion direction. Vision Research, 140, 133–139. https://doi.org/10.1016/j.visres.2017.09.001

Thibault, L., van den Berg, R., Cavanagh, P., & Sergent, C. (2016). Retrospective attention gates discrete conscious access to past sensory stimuli. PloS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148504

Valera, F. J., Toro, A., John, E. R., & Schwartz, E. L. (1981). Perceptual framing and cortical alpha rhythm. Neuropsychologia, 19(5), 675–686. https://doi.org/10.1016/0028-3932(81)90005-1

VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723–735. https://doi.org/10.1016/j.tics.2016.07.006

VanRullen, R. (2018). Perceptual rhythms. In J. T. Wixted (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (pp. 1-44). Wiley. https://doi.org/10.1002/9781119170174.epcn212

VanRullen, R., & Dubois, J. (2011). The psychophysics of brain rhythms. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00203

VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7(5), 207–213. https://doi.org/10.1016/S1364-6613(03)00095-0

VanRullen, R., & Macdonald, J. S. P. (2012). Perceptual echoes at 10 Hz in the human brain. Current Biology, 22(11), 995–999. https://doi.org/10.1016/j.cub.2012.03.050

VanRullen, R., Busch, N. A., Drewes, J., & Dubois, J. (2011). Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00060

Vogelsang, L., Drissi-Daoudi, L., & Herzog, M. H. (2021). What determines the temporal extent of unconscious feature integration? Journal of Vision, 21(9), 2323. https://doi.org/10.1167/jov.21.9.2323

Wang, Y., Yao, Z., & Wang, Y. (2020). The internal temporal dynamic of unconscious inhibition related to weak stimulus–response associations. Quarterly Journal of Experimental Psychology, 73(3), 344–356. https://doi.org/10.1177/1747021819878121

White, C. T. (1963). Temporal numerosity and the psychological unit of duration. Psychological Monographs: General and Applied, 77(12), 1–37. https://doi.org/10.1037/h0093860

White, P. A. (2017). The three-second «subjective present»: A critical review and a new proposal. Psychological Bulletin, 143(7), 735–756. https://doi.org/10.1037/bul0000104

White, P. A. (2018). Is conscious perception a series of discrete temporal frames? Consciousness and Cognition, 60, 98–126. https://doi.org/10.1016/j.concog.2018.02.012

Yee, P. L. (1991). Semantic inhibition of Ignored Words during a Figure Classification Task. The Quarterly Journal of Experimental Psychology, 43(1), 127–153. https://doi.org/10.1080/14640749108401002

Zhou, Y. J., Iemi, L., Schoffelen, J.-M., de Lange, F. P., & Haegens, S. (2021). Alpha oscillations shape sensory representation and perceptual sensitivity. Journal of Neuroscience, 41(46), 9581–9592. https://doi.org/10.1523/JNEUROSCI.1114-21.2021

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Kostina, D. I., Filippova, M. G., Allakhverdov, M. V., Allakhverdov, V. M.