Аннотация
Аннотация: Введение. Является ли восприятие дискретным или непрерывным? Этот вопрос имеет давнюю историю, но в свете полученных в последние годы экспериментальных данных снова обретает актуальность. Имеющиеся модели опираются на разное понимание дискретности, и в них выделяются разные единицы дискретного восприятия. Теоретическое обоснование. В статье рассматривается развитие дискретных моделей восприятия и разбираются различные теоретические обоснования дискретности. Результаты и их обсуждение. Приводится обзор экспериментальных исследований, поддерживающих дискретные модели, обсуждаются основные направления их критики. Результаты новых исследований поддерживают идею о том, что дискретно именно осознаваемое восприятие, тогда как неосознаваемая обработка информации может быть непрерывной или осуществляться с бо́льшим временны́м разрешением. Сравниваются два популярных современных подхода к дискретному восприятию. В рамках одного из них предполагается, что дискретная единица восприятия относительно невелика и связана с временны́м разрешением, при этом она не является универсальной – дискретизация может осуществляться с разной частотой, например, для разных модальностей. В рамках второго подхода дискретизация связывается с необходимостью вычисления наилучшей осмысленной интерпретации поступающих данных. Дискретная единица в этом подходе (временно́е окно неосознаваемой обработки) является универсальной, но ее длительность не фиксирована и зависит от характера поступающих данных. Также предлагается альтернативный подход, опирающийся на положения концепции негативного выбора В. М. Аллахвердова, из которой также следует существование окна неосознаваемой обработки, длительность которого не является постоянной. Новизна данного подхода в том, что длительность окна связывается со сложностью операций контроля, задачей которого является отбор информации для поступления в сознание. Обсуждается возможность использования этого подхода для объяснения временно́й динамики эффектов прайминга и мигания внимания, за непостоянством временны́х границ которой мы видим проявление общей логики дискретизации.
Библиографические ссылки
Akyürek, E. G., & Wolff, M. J. (2016). Extended temporal integration in rapid serial visual presentation: Attentional control at Lag 1 and beyond. Acta Psychologica, 168, 50–64. https://doi.org/10.1016/j.actpsy.2016.04.009
Alamia, A., & VanRullen, R. (2019). Alpha oscillations and traveling waves: Signatures of predictive coding? PLoS Biology, 17(10). https://doi.org/10.1371/journal.pbio.3000487
Allakhverdov V. M. The mysterious charm of consciousness: Conversations about eternal problems, or an invitation to the absurd. Collected works in seven volumes. Volume 7 (in Russ.).
Allakhverdov, V. M. (2000). Consciousness as a paradox. DNK (in Russ.).
Allakhverdov, V. M., Filippova, M. G., Gershkovich, V. A., Karpinskaia, V. Y., Scott, T. V., & Vladykina, N. P. (2019). Consciousness, learning, and control: On the path to a theory. In A. Cleeremans, V. Allakhverdov, & M. Kuvaldina (Eds.), Implicit learning: 50 years on (pp. 71–107). Routledge. https://doi.org/10.4324/9781315628905
Allport, D. A. (1968). Phenomenal simultaneity and the perceptual moment hypothesis. British Journal of Psychology, 59(4), 395–406. https://doi.org/10.1111/j.2044-8295.1968.tb01154.x
Atas, A., & Cleeremans, A. (2015). The temporal dynamic of automatic inhibition of irrelevant actions. Journal of Experimental Psychology. Human Perception and Performance, 41(2), 289–305. https://doi.org/10.1037/a0038654
Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge University Press.
Bachmann, T., Põder, E., & Luiga, I. (2004). Illusory reversal of temporal order: The bias to report a dimmer stimulus as the first. Vision Research, 44(3), 241–246. https://doi.org/10.1016/j.visres.2003.10.012
Boy, F., & Sumner, P. (2010). Tight coupling between positive and reversed priming in the masked prime paradigm. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 892–905. https://doi.org/10.1037/a0017173
Breitmeyer, B. G., & Ogmen, H. (2000). Recent models and findings in visual backward masking: A comparison, review, and update. Perception & Psychophysics, 62, 1572–1595. https://doi.org/10.3758/BF03212157
Burr, D. C., & Santoro, L. (2001). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research, 41(15), 1891–1899. https://doi.org/10.1016/S0042-6989(01)00072-4
Busch, N. A., & VanRullen, R. (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences, 107(37), 16048–16053. https://doi.org/10.1073/pnas.1004801107
Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869–7876. https://doi.org/10.1523/JNEUROSCI.0113-09.2009
Callaway III, E., & Yeager, C. L. (1960). Relationship between reaction time and electroencephalographic alpha phase. Science, 132(3441), 1765–1766. https://doi.org/10.1126/science.132.3441.1765
Chakravarthi, R., & VanRullen, R. (2012). Conscious updating is a rhythmic process. Proceedings of the National Academy of Sciences, 109(26), 10599–10604. https://doi.org/10.1073/pnas.1121622109
Chota, S. (2020). The causal role of neural oscillations in attentional and perceptual sampling mechanisms (Doctoral dissertation). Université Paul Sabatier, Toulouse III. https://tel.archives-ouvertes.fr/tel-03117853/document
Chota, S., & VanRullen, R. (2019). Visual entrainment at 10 Hz causes periodic modulation of the flash lag illusion. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00232
Chota, S., Marque, P., & VanRullen, R. (2021). Occipital Alpha-TMS causally modulates temporal order judgements: Evidence for discrete temporal windows in vision. NeuroImage, 237. https://doi.org/10.1016/j.neuroimage.2021.118173
Cravo, A. M., Santos, K. M., Reyes, M. B., Caetano, M. S., & Claessens, P. M. E. (2015). Visual causality judgments correlate with the phase of alpha oscillations. Journal of Cognitive Neuroscience, 27(10), 1887–1894. https://doi.org/10.1162/jocn_a_00832
Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119–126. https://doi.org/10.1038/nn0203-119
D’Angelo, M. C., & Milliken, B. (2012). Context-specific control in the single-prime negative-priming procedure. Quarterly Journal of Experimental Psychology, 65(5), 887–910. https://doi.org/10.1080/17470218.2011.630478
Dainton, B. (2018). Temporal consciousness. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2018 Edition). https://plato.stanford.edu/archives/win2018/entries/consciousness-temporal/
Dehaene, S. (1993). Temporal oscillations in human perception. Psychological Science, 4(4), 264–270. https://doi.org/10.1111/j.1467-9280.1993.tb00273.x
Di Lollo, V., Kawahara, J.-I., Shahab Ghorashi, S. M., & Enns, J. T. (2005). The attentional blink: Resource depletion or temporary loss of control? Psychological Research, 69, 191–200. https://doi.org/10.1007/s00426-004-0173-x
Doerig, A., Scharnowski, F., & Herzog, M. H. (2019). Building perception block by block: A response to Fekete et al. Neuroscience of Consciousness, 2019(1). https://doi.org/10.1093/nc/niy012
Drewes, J., & VanRullen, R. (2011). This is the rhythm of your eyes: The phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. Journal of Neuroscience, 31(12), 4698–4708. https://doi.org/10.1523/JNEUROSCI.4795-10.2011
Drissi-Daoudi, L., Doerig, A., & Herzog, M. H. (2019). Feature integration within discrete time windows. Nature Communications, 10. https://doi.org/10.1038/s41467-019-12919-7
Drissi-Daoudi, L., Öğmen, H., & Herzog, M. H. (2021). Features integrate along a motion trajectory when object integrity is preserved. Journal of Vision, 21(12), 4. https://doi.org/10.1167/jov.21.12.4
Drissi-Daoudi, L., Öğmen, H., Herzog, M. H., & Cicchini, G. M. (2020). Object identity determines trans-saccadic integration. Journal of Vision, 20(7). https://doi.org/10.1167/jov.20.7.33
Dugué, L., Marque, P., & VanRullen, R. (2015). Theta oscillations modulate attentional search performance periodically. Journal of Cognitive Neuroscience, 27(5), 945–958. https://doi.org/10.1162/jocn_a_00755
Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, & Psychophysics, 71, 1683–1700. https://doi.org/10.3758/APP.71.8.1683
Eimer, M. (1999). Facilitatory and inhibitory effects of masked prime stimuli on motor activation and behavioural performance. Acta Psychologica, 101(2–3), 293–313. https://doi.org/10.1016/S0001-6918(99)00009-8
Elliott, M. A., & Giersch, A. (2016). What happens in a moment. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01905
Fakche, C., VanRullen, R., Marque, P., & Dugué, L. (2022). α Phase-amplitude tradeoffs predict visual perception. eNeuro, 9(1). https://doi.org/10.1523/ENEURO.0244-21.2022
Falikman, M. V. (2001). Dynamics of attention in the context of rapid serial presentation of visual stimuli. PhD thesis. Lomonosov MSU (in Russ.).
Fekete, T., Van de Cruys, S., Ekroll, V., & van Leeuwen, C. (2018). In the interest of saving time: A critique of discrete perception. Neuroscience of Consciousness, 2018(1). https://doi.org/10.1093/nc/niy003
Ferlazzo, F., Lucido, S., Di Nocera, F., Fagioli, S., & Sdoia, S. (2007). Switching between goals mediates the attentional blink effect. Experimental Psychology, 54(2), 89–98. https://doi.org/10.1027/1618-3169.54.2.89
Fiebelkorn, I. C., Snyder, A. C., Mercier, M. R., Butler, J. S., Molholm, S., & Foxe, J. J. (2013). Cortical cross-frequency coupling predicts perceptual outcomes. Neuroimage, 69, 126–137. https://doi.org/10.1016/j.neuroimage.2012.11.021
Filippova, M. G., & Kostina, D. (2020). Dynamics of priming-effect for subliminally presented ambiguous pictures. Journal of Cognitive Psychology, 32(2), 199–213. https://doi.org/10.1080/20445911.2019.1708916
Frings, C., & Eder, A. B. (2009). The time-course of masked negative priming. Experimental Psychology, 56(5), 301–306. https://doi.org/10.1027/1618-3169.56.5.301
Frings, C., & Wentura, D. (2005). Negative priming with masked distractor-only prime trials: Awareness moderates negative priming. Experimental Psychology, 52(2). https://doi.org/10.1027/1618-3169.52.2.131
Geldard, F. A., & Sherrick, C. E. (1972). The cutaneous «rabbit»: A perceptual illusion. Science, 178(4057), 178–179. https://doi.org/10.1126/science.178.4057.178
Haegens, S., & Golumbic, E. Z. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience & Biobehavioral Reviews, 86, 150–165. https://doi.org/10.1016/j.neubiorev.2017.12.002
Harter, M. R. (1967). Excitability cycles and cortical scanning: A review of two hypotheses of central intermittency in perception. Psychological Bulletin, 68(1), 47–58. https://doi.org/10.1037/h0024725
Herzog, M. H., Drissi-Daoudi, L., & Doerig, A. (2020). All in good time: Long-lasting postdictive effects reveal discrete perception. Trends in Cognitive Sciences, 24(10), 826–837. https://doi.org/10.1016/j.tics.2020.07.001
Herzog, M. H., Kammer, T., & Scharnowski, F. (2016). Time slices: What is the duration of a percept? PLoS Biology, 14(4). https://doi.org/10.1371/journal.pbio.1002493
Hogendoorn, H. (2020). Motion extrapolation in visual processing: Lessons from 25 years of flash-lag debate. Journal of Neuroscience, 40(30), 5698–5705. https://doi.org/10.1523/JNEUROSCI.0275-20.2020
Kolers, P. A., & von Grünau, M. (1976). Shape and color in apparent motion. Vision Research, 16(4), 329–335. https://doi.org/10.1016/0042-6989(76)90192-9
Lindsley, D. B. (1952). Psychological phenomena and the electroencephalogram. Electroencephalography and Clinical Neurophysiology, 4(4), 443–456. https://doi.org/10.1016/0013-4694(52)90075-8
Lingnau, A., & Vorberg, D. (2005). The time course of response inhibition in masked priming. Perception & Psychophysics, 67, 545–557. https://doi.org/10.3758/BF03193330
Luo, C., VanRullen, R., & Alamia, A. (2021). Conscious perception and perceptual echoes: A binocular rivalry study. Neuroscience of Consciousness, 2021(1). https://doi.org/10.1093/nc/niab007
Makarov, I. M., & Gorbunova, E. S. (2020). Target-target perceptual similarity within the attentional blink. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.551890
Manassi, M., & Whitney, D. (2022). Illusion of visual stability through active perceptual serial dependence. Science Advances, 8(2). https://doi.org/10.1126/sciadv.abk2480
Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725–2732. https://doi.org/10.1523/JNEUROSCI.3963-08.2009
Miller, J. (1988). Discrete and continuous models of human information processing: Theoretical distinctions and empirical results. Acta Psychologica, 67(3), 191–257. https://doi.org/10.1016/0001-6918(88)90013-3
Milliken, B., Joordens, S., Merikle, P. M., & Seiffert, A. E. (1998). Selective attention: A reevaluation of the implications of negative priming. Psychological Review, 105(2), 203–229. https://doi.org/10.1037/0033-295X.105.2.203
Milton, A., & Pleydell-Pearce, C. W. (2016). The phase of pre-stimulus alpha oscillations influences the visual perception of stimulus timing. NeuroImage, 133, 53–61. https://doi.org/10.1016/j.neuroimage.2016.02.065
Morrow, A., & Samaha, J. (2022). No evidence for a single oscillator underlying discrete visual percepts. European Journal of Neuroscience, 55(11–12), 3054–3066. https://doi.org/10.1111/ejn.15362
Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256–257. https://doi.org/10.1038/370256b0
Noguchi, Y., Shimojo, S., Kakigi, R., & Hoshiyama, M. (2007). Spatial contexts can inhibit a mislocalization of visual stimuli during smooth pursuit. Journal of Vision, 7. https://doi.org/10.1167/7.13.13
Ortells, J. J., Abad, M. J. F., Noguera, C., & Lupiáñez, J. (2001). Influence of prime-probe stimulus onset asynchrony and prime precuing manipulations on semantic priming effects with words in a lexical-decision task. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 75–91. https://doi.org/10.1037/0096-1523.27.1.75
Ortells, J. J., Fox, E., Noguera, C., & Abad, M. J. F. (2003). Repetition priming effects from attended vs. ignored single words in a semantic categorization task. Acta Psychologica, 114(2), 185–210. https://doi.org/10.1016/j.actpsy.2003.08.002
Otto, T. U., Ögmen, H., & Herzog, M. H. (2009). Feature integration across space, time, and orientation. Journal of Experimental Psychology: Human Perception and Performance, 35(6), 1670–1686. https://doi.org/10.1037/a0015798
Pilz, K. S., Zimmermann, C., Scholz, J., & Herzog, M. H. (2013). Long-lasting visual integration of form, motion, and color as revealed by visual masking. Journal of Vision, 13, 12. https://doi.org/10.1167/13.10.12
Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56–61. https://doi.org/10.1016/S1364-6613(97)01008-5
Pöppel, E. (2009). Pre-semantically defined temporal windows for cognitive processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1887–1896. https://doi.org/10.1098/rstb.2009.0015
Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–860. https://doi.org/10.1037//0096-1523.18.3.849
Ronconi, L., Busch, N. A., & Melcher, D. (2018). Alpha-band sensory entrainment alters the duration of temporal windows in visual perception. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-29671-5
Ronconi, L., Oosterhof, N. N., Bonmassar, C., & Melcher, D. (2017). Multiple oscillatory rhythms determine the temporal organization of perception. Proceedings of the National Academy of Sciences, 114(51), 13435–13440. https://doi.org/10.1073/pnas.1714522114
Samaha, J., & Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985–2990. https://doi.org/10.1016/j.cub.2015.10.007
Scharnowski, F., Rüter, J., Jolij, J., Hermens, F., Kammer, T., & Herzog, M. H. (2009). Long-lasting modulation of feature integration by transcranial magnetic stimulation. Journal of Vision, 9(6), 1. https://doi.org/10.1167/9.6.1
Schlaghecken, F., & Eimer, M. (2000). A central-peripheral asymmetry in masked priming. Perception & Psychophysics, 62, 1367–1382. https://doi.org/10.3758/BF03212139
Schneider, K. A. (2018). The flash-lag, Fröhlich and related motion illusions are natural consequences of discrete sampling in the visual system. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01227
Schulz, D. P., Schulz, S. E. (2002). The history of modern psychology (Ed. of A. D. Nasledov). SPb., Evraziya (in Russ.).
Shallice, T. (1964). The detection of change and the perceptual moment hypothesis. British Journal of Statistical Psychology, 17(2), 113–135. https://doi.org/10.1111/j.2044-8317.1964.tb00254.x
Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1997). The attentional blink. Trends in Cognitive Sciences, 1(8), 291–296. https://doi.org/10.1016/S1364-6613(97)01094-2
Sherman, M. T., Kanai, R., Seth, A. K., & VanRullen, R. (2016). Rhythmic influence of top–down perceptual priors in the phase of prestimulus occipital alpha oscillations. Journal of Cognitive Neuroscience, 28(9), 1318–1330. https://doi.org/10.1162/jocn_a_00973
Sheth, B. R., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nature Neuroscience, 3, 489–495. https://doi.org/10.1038/74865
Shimojo, S. (2014). Postdiction: Its implications on visual awareness, hindsight, and sense of agency. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00196
Snir, G., & Yeshurun, Y. (2017). Perceptual episodes, temporal attention, and the role of cognitive control: Lessons from the attentional blink. Progress in Brain Research, 236, 53–73. https://doi.org/10.1016/bs.pbr.2017.07.008
Sokoliuk, R., & VanRullen, R. (2019). Perceptual illusions caused by discrete sampling. In V. Arstila, A. Bardon, S. Power, A. Vatakis (Eds.), The Illusions of Time (pp. 315–338). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-22048-8_17
Stiles, N. R., Li, M., Levitan, C. A., Kamitani, Y., & Shimojo, S. (2018). What you saw is what you will hear: Two new illusions with audiovisual postdictive effects. PloS One, 13(10). https://doi.org/10.1371/journal.pone.0207894
Stroud, J. M. (1967). The fine structure of psychological time. Annals of the New York Academy of Sciences, 138(2), 623–631. https://doi.org/10.1111/j.1749-6632.1967.tb55012.x
Sun, L., Frank, S. M., Hartstein, K. C., Hassan, W., & Tse, P., U. (2017). Back from the future: Volitional postdiction of perceived apparent motion direction. Vision Research, 140, 133–139. https://doi.org/10.1016/j.visres.2017.09.001
Thibault, L., van den Berg, R., Cavanagh, P., & Sergent, C. (2016). Retrospective attention gates discrete conscious access to past sensory stimuli. PloS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148504
Valera, F. J., Toro, A., John, E. R., & Schwartz, E. L. (1981). Perceptual framing and cortical alpha rhythm. Neuropsychologia, 19(5), 675–686. https://doi.org/10.1016/0028-3932(81)90005-1
VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723–735. https://doi.org/10.1016/j.tics.2016.07.006
VanRullen, R. (2018). Perceptual rhythms. In J. T. Wixted (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (pp. 1-44). Wiley. https://doi.org/10.1002/9781119170174.epcn212
VanRullen, R., & Dubois, J. (2011). The psychophysics of brain rhythms. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00203
VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7(5), 207–213. https://doi.org/10.1016/S1364-6613(03)00095-0
VanRullen, R., & Macdonald, J. S. P. (2012). Perceptual echoes at 10 Hz in the human brain. Current Biology, 22(11), 995–999. https://doi.org/10.1016/j.cub.2012.03.050
VanRullen, R., Busch, N. A., Drewes, J., & Dubois, J. (2011). Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00060
Vogelsang, L., Drissi-Daoudi, L., & Herzog, M. H. (2021). What determines the temporal extent of unconscious feature integration? Journal of Vision, 21(9), 2323. https://doi.org/10.1167/jov.21.9.2323
Wang, Y., Yao, Z., & Wang, Y. (2020). The internal temporal dynamic of unconscious inhibition related to weak stimulus–response associations. Quarterly Journal of Experimental Psychology, 73(3), 344–356. https://doi.org/10.1177/1747021819878121
White, C. T. (1963). Temporal numerosity and the psychological unit of duration. Psychological Monographs: General and Applied, 77(12), 1–37. https://doi.org/10.1037/h0093860
White, P. A. (2017). The three-second «subjective present»: A critical review and a new proposal. Psychological Bulletin, 143(7), 735–756. https://doi.org/10.1037/bul0000104
White, P. A. (2018). Is conscious perception a series of discrete temporal frames? Consciousness and Cognition, 60, 98–126. https://doi.org/10.1016/j.concog.2018.02.012
Yee, P. L. (1991). Semantic inhibition of Ignored Words during a Figure Classification Task. The Quarterly Journal of Experimental Psychology, 43(1), 127–153. https://doi.org/10.1080/14640749108401002
Zhou, Y. J., Iemi, L., Schoffelen, J.-M., de Lange, F. P., & Haegens, S. (2021). Alpha oscillations shape sensory representation and perceptual sensitivity. Journal of Neuroscience, 41(46), 9581–9592. https://doi.org/10.1523/JNEUROSCI.1114-21.2021
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Copyright (c) 2022 Костина Д. И., Филиппова М. Г., Аллахвердов М. В., Аллахвердов В. М.