Аннотация
Введение. В статье представлен обзор современных исследований природы индивидуальных различий структурных характеристик мозга. В рамках концепции эндофенотипов (промежуточного звена между геном и комплексным фенотипическим признаком) рассматривается роль индивидуальных различий в структурных характеристиках мозга в формировании индивидуальных различий в психологических признаках. Теоретическое обоснование. В настоящей работе анализируется роль генетических и средовых факторов в формировании индивидуальных различий в структурных характеристиках мозга, измеренных с помощью методов магнитно-резонансной томографии и диффузно-тензорной визуализации. В обзор включены результаты близнецовых исследований, исследований генов-кандидатов, а также полногеномных исследований ассоциаций. Результаты и их обсуждение. В целом генетически информативные исследования структурных характеристик мозга свидетельствуют о том, что для небольшого ряда структур (например, проводящие пути кортикоспинального тракта или объем боковых желудочков) наблюдаются умеренные показатели наследуемости (от 20 до 50 %), тогда как наследуемость большинства структурных характеристик – более 50 %. Показано, что вклад генетических факторов в индивидуальные различия структурных характеристик мозга изменяется в ходе онтогенеза. На основании применения методов многомерного анализа выявлен общий генетический вклад в индивидуальные различия в структурных характеристиках мозга и поведенческих фенотипов. В обзоре представлены результаты новых типов молекулярно-генетических исследований, в первую очередь с применением метода полногеномного анализа ассоциаций, в котором рассматриваются сотни тысяч ДНК-маркеров одновременно. Обсуждаются также исследования таких генетических факторов, как вариация числа копий генов и всегеномные (whole-genome) исследования. В обзоре показано, что в связи с наметившимся в настоящее время переходом к формату многоцентровых консорциумов и связанному с этим росту исследуемых выборок, у современных исследователей открывается новое поле возможностей для изучения вклада генетических факторов в индивидуальные различия в структурных характеристиках мозга.
Библиографические ссылки
Adrián-Ventura, J., Costumero, V., Parcet, M. A., & Ávila, C. (2019). Linking personality and brain anatomy: A structural MRI approach to Reinforcement Sensitivity Theory. Social Cognitive and Affective Neuroscience, 14(3), 329–338. doi: http://dx.doi.org/10.1093/scan/nsz011
Baaré, W. F. C., Hulshoff Pol, H. E., Boomsma, D. I., Posthuma, D., de Geus, E. J. C., Schnack, H. G., … Kahn, R. S. (2001). Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex, 11(9), 816–824. doi: http://dx.doi.org/10.1093/cercor/11.9.816
Bartley, A. J., Jones, D. W., & Weinberger, D. R. (1997). Genetic variability of human brain size and cortical gyral patterns. Brain, 120(2), 257–269. doi: http://dx.doi.org/10.1093/brain/120.2.257
Bartzokis, G., Beckson, M., Lu, P. H., Nuechterlein, K. H., Edwards, N., & Mintz, J. (2001). Age-related changes in frontal and temporal lobe volumes in men. Archives of General Psychiatry, 58(5), 461–465. doi: http://dx.doi.org/10.1001/archpsyc.58.5.461
Basser, P. J., Mattiello, J., & Lebihan, D. (1994). Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance, Series B, 103(3), 247–254. doi: http://dx.doi.org/10.1006/jmrb.1994.1037
Bates, T. C., Luciano, M., Lind, P. A., Wright, M. J., Montgomery, G. W., & Martin, N. G. (2008). Recently-derived variants of brain-size genes ASPM, MCPH1, CDK5RAP and BRCA1 not associated with general cognition, reading or language. Intelligence, 36(6), 689–693. doi: http://dx.doi.org/10.1016/j.intell.2008.04.001
Batouli, S. A. H., Trollor, J. N., Wen, W., & Sachdev, P. S. (2014). The heritability of volumes of brain structures and its relationship to age: A review of twin and family studies. Ageing Research Reviews, 13, 1–9. doi: http://dx.doi.org/10.1016/j.arr.2013.10.003
Blokland, G. A. M., de Zubicaray, G. I., McMahon, K. L., & Wright, M. J. (2012). Genetic and environmental influences on neuroimaging phenotypes: A meta-analytical perspective on twin imaging studies. Twin Research and Human Genetics, 15(3), 351–371. doi: http://dx.doi.org/10.1017/thg.2012.11
Bohlken, M. M., Brouwer, R. M., Mandl, R. C. W., van Haren, N. E. M., Brans, R. G. H., van Baal, G. C. M., ... & Hulshoff Pol, H. E. (2014). Genes contributing to subcortical volumes and intellectual ability implicate the thalamus. Human Brain Mapping, 35(6), 2632–2642. doi: http://dx.doi.org/10.1002/hbm.22356
Brans, R. G. H., Kahn, R. S., Schnack, H. G., van Baal, G. C. M., Posthuma, D., van Haren, N. E. M., ... & Hulshoff Pol, H. E. (2010). Brain plasticity and intellectual ability are influenced by shared genes. Journal of Neuroscience, 30(16), 5519–5524. doi: http://dx.doi.org/10.1523/JNEUROSCI.5841-09.2010
Brans, R. G. H., van Haren, N. E. M., van Baal, G. C. M., Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. (2008). Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Archives of General Psychiatry, 65(11), 1259–1268. doi: http://dx.doi.org/10.1001/archpsyc.65.11.1259
Brouwer, R. M., Hedman, A. M., van Haren, N. E., Schnack, H. G., Brans, R. G. H., Smit, D. J. A., ... & Hulshoff Pol, H. E. (2014). Heritability of brain volume change and its relation to intelligence. NeuroImage, 100, 676–683. doi: http://dx.doi.org/10.1016/j.neuroimage.2014.04.072
Brun, C. C., Leporé, N., Pennec, X., Lee, A. D., Barysheva, M., Madsen, S. K., … Thompson, P. M. (2009). Mapping the regional influence of genetics on brain structure variability – A Tensor-Based Morphometry study. NeuroImage, 48(1), 37–49. doi: http://dx.doi.org/10.1016/j.neuroimage.2009.05.022
Cannon, T. D., Thompson, P. M., van Erp, T. G. M., Huttunen, M., Lonnqvist, J., Kaprio, J., & Toga, A. W. (2006). Mapping heritability and molecular genetic associations with cortical features using probabilistic brain atlases: Methods and applications to schizophrenia. Neuroinformatics, 4, 5–19. doi: http://dx.doi.org/10.1385/ni:4:1:5
Carmelli, D., DeCarli, C., Swan, G. E., Jack, L. M., Reed, T., Wolf, P. A., & Miller, B. L. (1998). Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke, 29(6), 1177–1181. doi: http://dx.doi.org/10.1161/01.str.29.6.1177
Carmelli, D., Swan, G. E., DeCarli, C., & Reed, T. (2002). Quantitative genetic modeling of regional brain volumes and cognitive performance in older male twins. Biological Psychology, 61(1–2), 139–155. doi: http://dx.doi.org/10.1016/s0301-0511(02)00056-x
Chiang, M.-C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., … Thompson, P. M. (2009). Genetics of brain fiber architecture and intellectual performance. Journal of Neuroscience, 29(7), 2212–2224. doi: http://dx.doi.org/10.1523/jneurosci.4184-08.2009
Chiang, M.-C., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Hickie, I., Toga, A. W., … Thompson, P. M. (2011). Genetics of white matter development: A DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage, 54(3), 2308–2317. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.10.015
DeStefano, A. L., Seshadri, S., Beiser, A., Atwood, L. D., Massaro, J. M., Au, R., … DeCarli, C. (2009). Bivariate heritability of total and regional brain volumes: The Framingham Study. Alzheimer Disease & Associated Disorders, 23(3), 218–223. doi: http://dx.doi.org/10.1097/wad.0b013e31819cadd8
Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & Engeland, H. V. (2001). Anatomical MRI of the developing human brain: What have we learned? Journal of the American Academy of Child & Adolescent Psychiatry, 40(9), 1012–1020. doi: http://dx.doi.org/10.1097/00004583-200109000-00009
Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870–878. doi: http://dx.doi.org/10.1006/nimg.2001.1037
Gershon, E. S., Alliey-Rodriguez, N., & Liu, C. (2011). After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. American Journal of Psychiatry, 168(3), 253–256. doi: http://dx.doi.org/10.1176/appi.ajp.2010.10091340
Geschwind, D. H., Miller, B. L., DeCarli, C., & Carmelli, D. (2002). Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proceedings of the National Academy of Sciences, 99(5), 3176–3181. doi: http://dx.doi.org/10.1073/pnas.052494999
Gignac, G. E., & Bates, T. C. (2017). Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence, 64, 18–29. doi: http://dx.doi.org/10.1016/j.intell.2017.06.004
Gilmore, J. H., Schmitt, J. E., Knickmeyer, R. C., Smith, J. K., Lin, W., Styner, M., … Neale, M. C. (2010). Genetic and environmental contributions to neonatal brain structure: A twin study. Human Brain Mapping, 31(8), 1174–1182. doi: http://dx.doi.org/10.1002/hbm.20926
Glahn, D. C., Curran, J. E., Winkler, A. M., Carless, M. A., Kent Jr., J. W., Charlesworth, J. C., … Blangero, J. (2012). High dimensional endophenotype ranking in the search for major depression risk genes. Biological Psychiatry, 71(1), 6–14. doi: http://dx.doi.org/10.1016/j.biopsych.2011.08.022
Gottesman, I. I., & Shields, J. (1972). Schizophrenia and genetics. A Twin Study Vantage Point. New York: Acad. Press.
Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., … Medland, S. E. (2020). The genetic architecture of the human cerebral cortex. Science, 367(6484). doi: http://dx.doi.org/10.1126/science.aay6690
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 65–73. doi: http://dx.doi.org/10.1016/j.tics.2008.11.003
Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J. C., van Beijsterveldt, C. E. M., … Plomin, R. (2009). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15, 1112–1120. doi: http://dx.doi.org/10.1038/mp.2009.55
Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., ... & Medland, S. E. (2015). Common genetic variants influence human subcortical brain structures. Nature, 520, 224–229. doi: http://dx.doi.org/10.1038/nature14101
Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017). Intelligence is associated with the modular structure of intrinsic brain networks. Scientific Reports, 7, 16088. doi: http://dx.doi.org/10.1038/s41598-017-15795-7
Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8, 473. doi: http://dx.doi.org/10.3389/fnhum.2014.00473
Hoogman, M., Muetzel, R., Guimaraes, J. P., Shumskaya, E., Mennes, M., Zwiers, M. P., … Franke, B. (2019). Brain imaging of the cortex in ADHD: A coordinated analysis of large-scale clinical and population-based samples. American Journal of Psychiatry, 176(7), 531–542. doi: http://dx.doi.org/10.1176/appi.ajp.2019.18091033
Hulshoff Pol, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C. W., Baaré, W. F., van Oel, C., … Kahn, R. S. (2006). Genetic contributions to human brain morphology and intelligence. Journal of Neuroscience, 26(40), 10235–10242. doi: http://dx.doi.org/10.1523/jneurosci.1312-06.2006
Iacono, W. G., Malone, S. M., & Vrieze, S. I. (2017). Endophenotype best practices. International Journal of Psychophysiology, 111, 115–144. doi: http://dx.doi.org/10.1016/j.ijpsycho.2016.07.516
Jahanshad, N., Kohannim, O., Hibar, D. P., Stein, J. L., McMahon, K. L., de Zubicaray, G. I., … Thompson, P. M. (2012). Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proceedings of the National Academy of Sciences, 109(14), E851–E859. doi: http://dx.doi.org/10.1073/pnas.1105543109
Jahanshad, N., Lee, A. D., Barysheva, M., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., ... & Thompson, P. M. (2010). Genetic influences on brain asymmetry: A DTI study of 374 twins and siblings. NeuroImage, 52(2), 455–469. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.04.236
Joshi, A. A., Leporé, N., Joshi, S. H., Lee, A. D., Barysheva, M., Stein, J. L., … Thompson, P. M. (2011). The contribution of genes to cortical thickness and volume. NeuroReport, 22(3), 101–105. doi: http://dx.doi.org/10.1097/wnr.0b013e3283424c84
Joyner, A. H., Roddey, J. C., Bloss, C. S., Bakken, T. E., Rimol, L. M., Melle, I., … Dale, A. M. (2009). A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proceedings of the National Academy of Sciences, 106(36), 15483–15488. doi: http://dx.doi.org/10.1073/pnas.0901866106
Kesslak, J. P., So, V., Choi, J., Cotman, C. W., & Gomez-Pinilla, F. (1998). Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: A mechanism to facilitate encoding and circuit maintenance? Behavioral Neuroscience, 112(4), 1012–1019. doi: http://dx.doi.org/10.1037/0735-7044.112.4.1012
Kochunov, P., Glahn, D. C., Lancaster, J. L., Winkler, A. M., Smith, S., Thompson, P. M., … Blangero, J. (2010). Genetics of microstructure of cerebral white matter using diffusion tensor imaging. NeuroImage, 53(3), 1109–1116. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.01.078
Kohannim, O., Hibar, D. P., Stein, J. L., Jahanshad, N., Hua, X., Rajagopalan, P., … The Alzheimer’s Disease Neuroimaging Initiative (2012). Discovery and replication of gene influences on brain structure using LASSO regression. Frontiers in Neuroscience, 6, 115. doi: http://dx.doi.org/10.3389/fnins.2012.00115
Konrad, A., Vucurevic, G., Musso, F., Stoeter, P., Dahmen, N., & Winterer, G. (2009). ErbB4 genotype predicts left frontotemporal structural connectivity in human brain. Neuropsychopharmacology, 34, 641–650. doi: http://dx.doi.org/10.1038/npp.2008.112
Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., … Giedd, J. N. (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30(1), 163–174. doi: http://dx.doi.org/10.1002/hbm.20494
Llera, A., Wolfers, T., Mulders, P., & Beckmann, C. F. (2019). Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior. eLife, 8. doi: http://dx.doi.org/10.7554/elife.44443
Lu, P. H., Thompson, P. M., Leow, A., Lee, G. J., Lee, A., Yanovsky, I., … Bartzokis, G. (2011). Apolipoprotein E genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: A tensor-based morphometry study. Journal of Alzheimer’s Disease, 23(3), 433–442. doi: http://dx.doi.org/10.3233/jad-2010-101398
Malykh, S. B., Egorova, M. S., & Meshkova, T. A. (2008). Psychogenetics. Saint Petersburg: Piter. (in Russ.).
Malykh, S. B., Kovas, Yu. V., & Gaisina, D. A. (Eds.) (2016). Behavior genomics: Child development and education. Tomsk: Tomsk State University. (in Russ.).
Marstaller, L., Burianová, H., & Reutens, D. C. (2016). Individual differences in structural and functional connectivity predict speed of emotion discrimination. Cortex, 85, 65–74. doi: http://dx.doi.org/10.1016/j.cortex.2016.10.001
McIntosh, A. M., Moorhead, T. W. J., Job, D., Lymer, G. K. S., Maniega, S. M., McKirdy, J., … Hall, J. (2007). The effects of a neuregulin 1 variant on white matter density and integrity. Molecular Psychiatry, 13, 1054–1059. doi: http://dx.doi.org/10.1038/sj.mp.4002103
Medland, S. E., Jahanshad, N., Neale, B. M., & Thompson, P. M. (2014). Whole-genome analyses of whole-brain data: Working within an expanded search space. Nature Neuroscience, 17, 791–800. doi: http://dx.doi.org/10.1038/nn.3718
Meyer-Lindenberg, A., Nicodemus, K. K., Egan, M. F., Callicott, J. H., Mattay, V., & Weinberger, D. R. (2008). False positives in imaging genetics. NeuroImage, 40(2), 655–661. doi: http://dx.doi.org/10.1016/j.neuroimage.2007.11.058
Mufford, M., Cheung, J., Jahanshad, N., van der Merwe, C., Ding, L., Groenewold, N., … Psychiatric Genomics Consortium – Tourette Syndrome working group (2019). Concordance of genetic variation that increases risk for Tourette Syndrome and that influences its underlying neurocircuitry. Translational Psychiatry, 9, 120. doi: http://dx.doi.org/10.1038/s41398-019-0452-3
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68. doi: http://dx.doi.org/10.1016/j.tics.2004.12.008
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., … Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908–1911. doi: http://dx.doi.org/10.1126/science.283.5409.1908
Pennington, B. F., Filipek, P. A., Lefly, D., Chhabildas, N., Kennedy, D. N., Simon, J. H., … DeFries, J. C. (2000). A twin MRI study of size variations in the human brain. Journal of Cognitive Neuroscience, 12(1), 223–232. doi: http://dx.doi.org/10.1162/089892900561850
Peper, J. S., Zwiers, M. P., Boomsma, D. I., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Human brain volume: What’s in the genes? In Kim, Y. K. (Ed.), Handbook of Behavior Genetics (pp. 137–157). New York: Springer. doi: http://dx.doi.org/10.1007/978-0-387-76727-7_10
Pfefferbaum, A., Sullivan, E. V., Swan, G. E., & Carmelli, D. (2000). Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiology of Aging, 21(1), 63–74. doi: http://dx.doi.org/10.1016/s0197-4580(00)00086-5
Plomin, R., & Craig, I. (1997). Human behavioural genetics of cognitive abilities and disabilities. BioEssays, 19(12), 1117–1124. doi: http://dx.doi.org/10.1002/bies.950191211
Posthuma, D. (2002). Genetic variation and cognitive ability. Amsterdam: VU.
Posthuma, D., de Geus, E. J. C., Neale, M. C., Hulshoff Pol, H. E., Baaré, W. E. C., Kahn, R. S., & Boomsma, D. (2000). Multivariate genetic analysis of brain structure in an extended twin design. Behavior Genetics, 30, 311–319. doi: http://dx.doi.org/10.1023/A:1026501501434
Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K. M., Williamson, A., & Acker, J. D. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: Replicability of regional differences in volume. Neurobiology of Aging, 25(3), 377–396. doi: http://dx.doi.org/10.1016/s0197-4580(03)00118-0
Reveley, A. M., Reveley, M. A., Chitkara, B., & Clifford, C. (1984). The genetic basis of cerebral ventricular volume. Psychiatry Research, 13(3), 261–266. doi: http://dx.doi.org/10.1016/0165-1781(84)90041-6
Rimol, L. M., Agartz, I., Djurovic, S., Brown, A. A., Roddey, J. C., Kähler, A. K., … Andreassen, O. A. (2010). Sex-dependent association of common variants of microcephaly genes with brain structure. Proceedings of the National Academy of Sciences, 107(1), 384–388. doi: http://dx.doi.org/10.1073/pnas.0908454107
Scamvougeras, A., Kigar, D. L., Jones, D., Weinberger, D. R., & Witelson, S. F. (2003). Size of the human corpus callosum is genetically determined: An MRI study in mono and dizygotic twins. Neuroscience Letters, 338(2), 91–94. doi: http://dx.doi.org/10.1016/s0304394002013332
Schmitt, J. E., Lenroot, R. K., Wallace, G. L., Ordaz, S., Taylor, K. N., Kabani, N., … Giedd, J. N. (2008). Identification of genetically mediated cortical networks: A multivariate study of pediatric twins and siblings. Cerebral Cortex, 18(8), 1737–1747. doi: http://dx.doi.org/10.1093/cercor/bhm211
Schmitt, J. E., Wallace, G. L., Lenroot, R. K., Ordaz, S. E., Greenstein, D., Clasen, L., … Giedd, J. N. (2010). A twin study of intracerebral volumetric relationships. Behavior Genetics, 40, 114–124. doi: http://dx.doi.org/10.1007/s10519-010-9332-6
Strike, L. T., Couvy-Duchesne, B., Hansell, N. K., Cuellar-Partida, G., Medland, S. E., & Wright, M. J. (2015). Genetics and brain morphology. Neuropsychology Review, 25, 63–96. doi: http://dx.doi.org/10.1007/s11065-015-9281-1
Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V.-P., Huttunen, M., … Toga, A. W. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 1253–1258. doi: http://dx.doi.org/10.1038/nn758
Thompson, P. M., Jahanshad, N., Ching, C. R. K., Salminen, L. E., Thomopoulos, S. I., Bright, J., ... & for the ENIGMA Consortium (2020). ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 10, 100. doi: http://dx.doi.org/10.1038/s41398-020-0705-1
Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Review of Neuroscience, 28, 1–23. doi: http://dx.doi.org/10.1146/annurev.neuro.28.061604.135655
van Haren, N. E. M., Hulshoff Pol, H. E., Schnack, H. G., Cahn, W., Brans, R., Carati, I., … Kahn, R. S. (2008). Progressive brain volume loss in schizophrenia over the course of the illness: Evidence of maturational abnormalities in early adulthood. Biological Psychiatry, 63(1), 106–113. doi: http://dx.doi.org/10.1016/j.biopsych.2007.01.004
van Leeuwen, M., van den Berg, S. M., Peper, J. S., Hulshoff Pol, H. E., & Boomsma, D. I. (2009). Genetic covariance structure of reading, intelligence and memory in children. Behavior Genetics, 39, 245–254. doi: http://dx.doi.org/10.1007/s10519-009-9264-1
van Soelen, I. L. C., Brouwer, R. M., Peper, J. S., van Beijsterveldt, T. C. E. M., van Leeuwen, M., de Vries, L. S., … Boomsma, D. I. (2010). Effects of gestational age and birth weight on brain volumes in healthy 9 year-old children. The Journal of Pediatrics, 156(6), 896–901. doi: http://dx.doi.org/10.1016/j.jpeds.2009.12.052
van Soelen, I. L. C., Brouwer, R. M., Peper, J. S., van Leeuwen, M., Koenis, M. M. G., van Beijsterveldt, T. C. E. M., … & Boomsma, D. I. (2012). Brain SCALE: Brain structure and cognition: An adolescent longitudinal twin study into the genetic etiology of individual differences. Twin Research and Human Genetics, 15(3), 453–467. doi: http://dx.doi.org/10.1017/thg.2012.4
Vuoksimaa, E., Panizzon, M. S., Chen, C.-H., Fiecas, M., Eyler, L. T., Fennema-Notestine, C., ... & Kremen, W. S. (2015). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex, 25(8), 2127–2137. doi: http://dx.doi.org/10.1093/cercor/bhu018
Wallace, G. L., Schmitt, J. E., Lenroot, R., Viding, E., Ordaz, S., Rosenthal, M. A., … Giedd, J. N. (2006). A pediatric twin study of brain morphometry. Journal of Child Psychology and Psychiatry, 47(10), 987–993. doi: http://dx.doi.org/10.1111/j.1469-7610.2006.01676.x
Walton, E., Hibar, D., Yilmaz, Z., Jahanshad, N., Cheung, J., Batury, V.-L., … Ehrlich, S. (2019). Exploration of shared genetic architecture between subcortical brain volumes and anorexia nervosa. Molecular Neurobiology, 56, 5146–5156. doi: http://dx.doi.org/10.1007/s12035-018-1439-4
Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., … Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146. doi: http://dx.doi.org/10.1016/j.neuroimage.2009.12.028
Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58–73. doi: http://dx.doi.org/10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.0.co;2-o
Wright, I. C., Sham, P., Murray, R. M., Weinberger, D. R., & Bullmore, E. T. (2002). Genetic contributions to regional variability in human brain structure: Methods and preliminary results. NeuroImage, 17(1), 256–271. doi: http://dx.doi.org/10.1006/nimg.2002.1163
Yoon, U., Fahim, C., Perusse, D., & Evans, A. C. (2010). Lateralized genetic and environmental influences on human brain morphology of 8-year-old twins. NeuroImage, 53(3), 1117–1125. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.01.007
Yoon, U., Perusse, D., Lee, J.-M., & Evans, A. C. (2011). Genetic and environmental influences on structural variability of the brain in pediatric twin: Deformation based morphometry. Neuroscience Letters, 493(1–2), 8–13. doi: http://dx.doi.org/10.1016/j.neulet.2011.01.070
Zavala, C., Beam, C. R., Finch, B. K., Gatz, M., Johnson, W., Kremen, W. S., ... & Reynolds, C. A. (2018). Attained SES as a moderator of adult cognitive performance: Testing gene–environment interaction in various cognitive domains. Developmental Psychology, 54(12), 2356–2370. doi: http://dx.doi.org/10.1037/dev0000576
Zuliani, R., Moorhead, T. W. J., Bastin, M. E., Johnstone, E. C., Lawrie, S. M., Brambilla, P., … McIntosh, A. M. (2011). Genetic variants in the ErbB4 gene are associated with white matter integrity. Psychiatry Research: Neuroimaging, 191(2), 133–137. doi: http://dx.doi.org/10.1016/j.pscychresns.2010.11.001