Abstract
Introduction. This paper discusses possibilities for using an integrated (psychophysiological and experimental psychological) approach to diagnosing cognitive processes to objectify disorders in patients with schizophrenia. This study represents the first attempt to apply psychophysiological methods to diagnose impairments in perception and thinking in schizophrenia. It is important to clarify the relationship between cognitive functioning and functional states of magnocellular and parvocellular neural visual networks and their dynamics during the development and progression of schizophrenia. The authors’ intention is to provide convincing evidence that the imbalance between these neural systems leads to impairments in the integrity of visual perception and, subsequently, to impairments in selective thinking, which makes it difficult to assess and recognize meaningful, essential information when forming judgments, and impedes the construction of a full and adequate world picture.
Methods. The study used the methods of visocontrastometry; contrast sensitivity and immunity to interference were assessed. To diagnose cognitive functions, the study used an experimental psychological method combined with the following neuro- and pathopsychological diagnostic tools: Exclusion of the 4th Superfluous, Comparison of Concepts, Poppelreuter Test, and Incomplete Images.
Results and Discussion. The authors examined functional states of the magnocellular and parvocellular visual systems, characteristics of their interaction, and cognitive functions at different stages of the disease. Psychophysiological characteristics of perception are associated with the processes of perception, memory, attention, and thinking. The findings indicate that magnocellular system is associated with the characteristics of perception, working memory, and characteristics of attention. Hyperactivation of the magnocellular system is accompanied by impairments in selective attention. Magno- and parvocellular systems (mechanisms of global and local analysis) contribute to the realization of thinking processes. Hypoactivation of the parvocellular system leads to a decrease in selective thinking. Progression of schizophrenia is accompanied by a decrease in the activity of both neural systems.
References
Addington, J., Addington, D., & Gasbarre, L. (2001). Neurocognitive and social functioning in schizophrenia and other diagnoses. Schizophrenia Research, 48(2–3), 367–368. https://doi.org/10.1016/S0920-9964(00)00103-1
Arbib, M. (2004). The Metaphorical Brain (2nd ed.). Moscow: Editorial URSS. (in Russ.).
Bleikher, V. M., Kruk, I. V., & Bokov, S. N. (2002). Clinical pathopsychology: A guide for physicians and clinical psychologists. Moscow: Moscow Institute of Psychology and Sociology; Voronezh: Modek. (in Russ.).
Bologov, P. V., Kritskaya, V. P., & Meleshko, T. K. (2009). Clinical and pathopsychological aspects of the differentiation of schizoaffective psychosis. Psikhiatriya (Psychiatry), 3, 7–14. (in Russ.).
Cherednikova, T. V. (2011). Modern neuropsychological, neurogenetic and neuromathematical concepts of schizophrenic thought disorders (review). Psikhologicheskie Issledovaniya. Retrieved from http://psystudy.ru (in Russ.).
Falikman, M. V., & Pechenkova, E. V. (2004). Strategic regulation of perceptual task accomplishment as a type of top-down influences on perceptual image construction. In The first Russian conference on cognitive science: Abstracts of reports (pp. 237–239). Kazan: KSU. (in Russ.).
Glezer, V. D. (1993). Vision and thinking (2nd ed.). St. Petersburg: Nauka. (in Russ.).
Green, M. F., & Harvey, P. D. (2014). Cognition in schizophrenia: Past, present, and future. Schizophrenia Research: Cognition, 1(1), e1–e9. https://doi.org/10.1016/j.scog.2014.02.001
Green, M. F., & Leitman, D. I. (2008). Social cognition in schizophrenia. Schizophrenia Bulletin, 34(4), 670–672. https://doi.org/10.1093/schbul/sbn045
Gurovich, I. Ya., Shmukler, A. B., & Magomedova, M. V. (2001). Correlation of neurocognitive deficit and social functioning in patients with schizophrenia and schizoaffective disorder at various stages of the disease. Sotsial'naya i klinicheskaya psikhiatriya (Social and Clinical Psychiatry), 11(4), 31–35. (in Russ.).
Harvey, P. D., & Keefe, R. S. E. (2009). Clinical neuropsychology of schizophrenia. In I. Grant, K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric and neuromedical disorders (3rd ed., pp. 507–522). New York: Oxford University Press.
Isaeva, E. R., Lebedeva, G. G., & Simon, Y. A. (2018). On the issue of choosing psychodiagnostic methods of measuring and scoring of cognitive deficit in case of schizophrenia. Journal of Evaluation in Clinical Practice, 24(4), 803–806. https://doi.org/10.1111/jep.12886
Ivanov, M. V., & Neznanov, N. G. (2008). Negative and cognitive disorders in endogenous psychoses: diagnosis, clinical presentation, and therapy. St. Petersburg: Evropeiskii Dom. (in Russ.).
Kalkstein, S., Hurford, I, & Gur, R. C. (2010). Neurocognition in schizophrenia. In N. Swerdlow (Ed.), Behavioral neurobiology of schizophrenia and its treatment. Current topics in behavioral neurosciences (Vol. 4, pp. 373–390). Berlin, Heidelberg: Springer. https://doi.org/10.1007/7854_2010_42
Kurylo, D. D., Pasternak, R., Silipo, G., Javitt, D. C., & Butler, P. D. (2007). Perceptual organization by proximity and similarity in schizophrenia. Schizophrenia Research, 95(1–3), 205–214. https://doi.org/10.1016/j.schres.2007.07.001
Lebedeva, G. G., & Isaeva, E. R. (2017). Profiles of cognitive deficit in paranoid schizophrenia and schizotypal disorder. Klinicheskaya i spetsial'naya psikhologiya (Clinical and Special Psychology), 6(1), 79–94. (in Russ.).
Lebedeva, G. G., Isaeva, E. R., & Stepanova, A. V. (2013). Cognitive deficits in paranoid schizophrenia and schizotypal disorder: A comparative study of cognitive impairments. Vestnik TGPU (Tomsk State Pedagogical University Bulletin), 5, 155–160. (in Russ.).
Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–402. https://doi.org/10.1146/annurev.ne.16.030193.002101
Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., & Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neuropsychology, 23(3), 315–336. https://doi.org/10.1037/a0014708
Mosolov, S. N. & Kabanov, S. O. (2005). Neurocognitive deficit in patients with paranoid schizophrenia during therapy with quetiapine, risperidone, and haloperidol. Psikhiatriya (Psychiatry), 1. Retrieved from http://www.psychiatry.ru/stat/190 (in Russ.).
Moustafa, А. A., Garami, J. K., Mahlberg, J., Golembieski, J., Keri, S., Misiak, B., & Frydecka, D. (2016). Cognitive function in schizophrenia: Conflicting findings and future directions. Reviews in the Neurosciences, 27(4), 435–448. https://doi.org/10.1515/revneuro-2015-0060
Mukhitova, Yu. V. (2013). Cognitive impairments in schizophrenic patients with varying degrees of severity of mental defect. Uchenye zapiski universiteta imeni P. F. Lesgafta (Scientific Notes of Lesgaft University), 8, 117–124. (in Russ.).
Neznanov, N. G., Shmukler, A. B., Kostyuk, G. P., & Sofronov, A. G. (2018). The first psychotic episode: epidemiological aspects of care provision. Sotsial'naya i klinicheskaya psikhiatriya (Social and Clinical Psychiatry), 28(3), 5–11. (in Russ.).
Nuechterlein, K. H., Dawson, M. E., Gitlin, M., Ventura, J., Goldstein, M. J., Snyder, K. S., … Mintz, J. (1992). Developmental processes in schizophrenic disorders: Longitudinal studies of vulnerability and stress. Schizophrenia Bulletin, 18(3), 387–425. https://doi.org/10.1093/schbul/18.3.387
Penadés, R., Franck, N., González-Vallespí, L., & Dekerle, M. (2019). Neuroimaging studies of cognitive function in schizophrenia. In P. Guest (Ed.), Reviews on biomarker studies in psychiatric and neurodegenerative disorders. Advances in experimental medicine and biology (Vol. 1118, pp. 117–134). Cham: Springer. https://doi.org/10.1007/978-3-030-05542-4_6
Peskin, N., Koren, D., & Gabay, S. (2020). Subcortical neural tracks play an important role in executive function in schizophrenia: An experimental study among patients with schizophrenia and healthy comparisons. Schizophrenia Research: Cognition, 22. https://doi.org/10.1016/j.scog.2020.100185
Rubinstein, S. Ya. (2004). Experimental methods of pathopsychology and experience of their application in the clinic: A practical guide. Moscow: Aprel' Press. (in Russ.).
Rychkova, O. V., Fedorova, A. P., & Priimak, M. A. (2011). Disorders of social intelligence and clinical symptoms in schizophrenia. Sotsial'naya i klinicheskaya psikhiatriya (Social and Clinical Psychiatry), 21(3), 10–21. (in Russ.).
Sartorius, N., Chiu, H., Heok, K. E., Lee, M.-S., Ouyang, W.-C., Sato, M., … Yu, X. (2014). Name change for schizophrenia. Schizophrenia Bulletin, 40(2), 255–258. https://doi.org/10.1093/schbul/sbt231
Savla, G. N., Moore, D. J., & Palmer, B. W. (2008). Cognitive functioning in schizophrenia. In K. T. Mueser, D. V. Jeste (Eds.), Clinical handbook of schizophrenia (pp. 91–99). New York: Guilford Press.
Schaub, A., Neubauer, N., Mueser, K. T., Engel, R., & Möller, H.-J. (2013). Neuropsychological functioning in inpatients with major depression or schizophrenia. BMC Psychiatry, 13, 203. https://doi.org/10.1186/1471-244X-13-203
Shelepin, Yu. E., Kolesnikova, L. N. & Levkovich, Yu. I. (1985). Visocontrastometry: Measurement of spatial transfer functions of the visual system. Leningrad: Nauka. (in Russ.).
Shoshina, I. I., & Shelepin, Yu. E. (2016). Mechanisms of global and local analysis of visual information in schizophrenia. St. Petersburg: VVM Publishing House. (in Russ.).
Shoshina, I. I., Shelepin, Yu. E., Vershinina, E. A., & Novikova, K. O. (2014). Functional features of the magnocellular and parvocellular systems in schizophrenia. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Psikhologiya (Bulletin of the South Ural State University. Series: Psychology), 7(4), 77–88. (in Russ.).
Shoshina, I. I., Shelepin, Y. E., Vershinina, E. A., & Novikova, K. O. (2015). The spatial-frequency characteristics of the visual system in schizophrenia. Human Physiology, 41, 251–260. https://doi.org/10.1134/S0362119715030159
Shoshina, I., Isajeva, E., Mukhitova, Y., Tregubenko, I., Khan’ko, A., Limankin, O., & Simon, Y. (2020). The internal noise of the visual system and cognitive functions in schizophrenia. Procedia Computer Science, 169, 813–820. https://doi.org/10.1016/j.procs.2020.02.158
Tkachenko, S. V., & Bocharov, A. V. (1991). Neuropsychological analysis of the defect in schizophrenia and affective psychosis. In M. M. Kabanov (Ed.), Schizophrenic defect (diagnostics, pathogenesis, and treatment) (pp. 95–123). St. Petersburg: St. Petersburg Bekhterev Psychoneurological Research Institute. (in Russ.).
Velichkovskii, B. M. (1999). From processing levels to cognition stratification. Voprosy psikhologii, 4, 58–75. (in Russ.).
Yanushko, M. G., Ivanov, M. V., & Sorokina, A. V. (2014). Cognitive disorders in endogenous psychoses: contemporary perspective in the light of dimensional approach. Sotsial'naya i klinicheskaya psikhiatriya (Social and Clinical Psychiatry), 24(1), 90–95. (in Russ.).
Zaitseva, Yu. S., Sarkisyan, G. R., Sarkisyan, V. V., & Storozhakova, Ya. A. (2011). Comparative study of the neurocognitive profile of patients with paranoid schizophrenia and schizoaffective disorder with the first psychotic episodes. Sotsial'naya i klinicheskaya psikhiatriya (Social and Clinical Psychiatry), 21(2), 5–11.
Zotov, M. V. (2012). The mechanisms of regulation of cognitive activity under emotional stress. St. Petersburg: Rech'. (in Russ.).
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Isaeva E. R., Tregubenko I. A., Mukhitova Yu. V., Shoshina I. I.