Abstract
The paper investigates the psychophysiological mechanisms of the texture perception when the stimuli differ in axial ratios of the carrier (texture elements) and the envelope (orientational modulation).
The human visual system has a number of preattentive mechanisms performing spatial grouping and segmentation of the scene. The perception of texture most likely carried out by the several “early” mechanisms, but at certain stages their activity can be modulated by top-down influences. We consider the second-order visual filters and the contour integration processes as the candidates that provide
the perception of spatial orientational modulations, as well as analyze the results of our electrophysiological study aimed at the brain mechanisms of the orientational modulations perception.
According to A. Schofield and T. Yates (2005), when the texture is sinusoidally modulated by the orientation, a number of different perceptual effects can be obtained. If the orientations of the modulation and the carrier are orthogonal, the texture pattern forms a “corrugation” and the effect of depth appears. The “herringbone”
is observed then the orientation of the modulation and the carrier are parallel, otherwise the “continuous structure” is observed. The contours formed by the textural elements seem like continuous in the orthogonal cases, and they are segmented in the parallel cases. These perceptual phenomena can be explained by the participation
of the different mechanisms in the processing of visual textures. Thus, when the carrier and the envelope are orthogonal, the role of the contour integration mechanisms can be increased. We used the method of visual evoked potentials for studying the sychophysiological
mechanisms of the orientation-modulated stimuli perception. 15 people
voluntarily participated in the investigation. The VEPs elicited by the modulated (“corrugation”, “herring-bone”) textures and unmodulated control stimuli were recorded using 19 electrodes. It was found that the mismatches between VEPs elicited by the experimental and control stimuli have strong spatial differences, respectively, for the textures
modulated orthogonally or in parallel to the carrier direction. This result may give the evidence that different brain mechanisms are involved in the perception of the orientationally modulated textures. That is also confirmed by the source localization of difference waves calculated by subtracting the evoked responses to the test and control stimuli (using sLoreta).
References
Бабенко В. В., Ермаков П. Н., Божинская М. А. Соотношение пространственно-частотных настроек зрительных фильтров первого и второго порядка // Психологический журнал. – 2010. – Т. 31. – № 2. – С. 48–57.
Бесчастнов Н. П. Портретная графика. – М.: Владос, 2007. – 400 c.
Гращенков В. Н. [сост.] Микеланджело. Жизнь и творчество. – М.: Искусство, 1964. – 417 с.
Казанович Я. Б. Теория временной корреляции и модели сегментации зрительной информации в мозге (обзор) // Математическая биология и биоинформатика. – 2010. – Т. 5. – № 1. – С. 43–97.
Фокин В. А., Шелепин Ю. Е., Хараузов А. К., Труфанов Г. Е., Севастьянов А. В., Пронин С. В., Коскин С. А. Локализация областей коры головного мозга человека, активируемых при восприятии упорядоченных и хаотичных изображений // Российский физиологический журнал им. И. М. Сече- нова. – 2007. – Т. 93. – № 10. – С. 1089–1100.
Шелепин К. Ю., Шелепин Ю. Е. Нейрофизиология «инсайта» // Петербургский психологический журнал. – 2015. – № 11. – С. 1–20.
Явна Д. В. Психофизиологические особенности зрительного восприятия пространственно модулированных признаков: дисс. … канд. психол. наук. – Ростов н/Д, 2012. – 183 с.
Albright T. D. Form-cue invariant motion processing in primate visual cortex // Science. – 1992. – v. 255. – no. 5048. – pp. 1141–1143.
Babenko V. V., Ermakov P. N. Specificity of brain reactions to second-order visual stimuli // vis. Neurosci. – 2015. – v. 32. – p. E011.
Delorme A., Makeig S. EEglaB: an open source toolbox for analysis of single-trial EEg dynamics including independent component analysis // j. Neurosci. Methods. – 2004. – v. 134. – no. 1. – pp. 9–21.
Kandil F. I., Fahle M. Electrophysiological correlates of purely temporal figure-ground segregation // vision res. – 2003. – v. 43. – no. 24. – pp. 2583–2589.
Kingdom F. A., Keeble D., Moulden B. Sensitivity to orientation modulation in micropattern-based textures // vision res. – 1995. – v. 35. – no. 1. – pp. 79–91.
Kingdom F. A., Prins N., Hayes A. Mechanism independence for texture-modulation detection is consistent with a filter-rectify-filter mechanism // vis. Neurosci. – 2003. – v. 20. – no. 1. – pp. 65–76.
Lancaster J. L., Woldorff M. G., Parsons L. M., Liotti M., Freitas C. S., Rainey L., Kochunov P. V., Nickerson D., Mikiten S. A., Fox P. T. automated Talairach atlas labels for functional brain mapping // hum. Brain Mapp. – 2000. – v. 10. – no. 3. – pp. 120–131.
Mareschal I., Baker C. L. Jr. Temporal and spatial response to second-order stimuli in cat area 18 // j. Neurophysiol. – 1998. – v. 80. – no. 6. – pp. 2811–2823.
Olzak L. A., Kramer M. higher-level processes in the second-order system // perception 36 Ecvp abstract Supplement. – 2007. – pp. 40–41.
Pascual-Marqui R. D. Standardized low resolution brain electromagnetic tomography (slorETa): technical details // Methods & Findings in Experi- mental & clinical pharmacology. – 2002. – v. 24. – Suppl. D. – pp. 5–12.
Pearson P. M. Interactions between colour and luminance in the processing of visual textures modulated in orientation, contrast, spatial frequency, and disparity // perception 36 Ecvp abstract Supplement. – 2007. – p. 45.
Pitts M. A., Martinez A. contour Integration: Sensory, perceptual, and attention- Based Erp components // cognitive electrophysiology of attention. Signals of the Mind. academic press. – 2014. – pp. 178–189.
Roelfsema P. R. cortical algorithms for perceptual grouping // annual review of Neuroscience. – 2006. – v. 29. – pp. 203–227.
Schofield A. J, Yates T. A. Interactions between orientation and contrast modulations suggest limited cross-cue linkage // perception. – 2005. – v. 34. – no. 7. – pp. 769–792.
Zhou Y. X., Baker C. L. Jr. a processing stream in mammalian visual cortex neurons for non-Fourier responses // Science. – 1993. – v. 261. – no. 5117. – pp. 98–101.
Zhou Y. X., Baker C. L. Jr. Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat // j. Neurophysiol. – 1996. – v. 75. – no. 3. – pp. 1038–1050.