Use of Independent Component Analysis for localization of evoked activity sources in distinguishing texture modulations Localization of evoked activity sources in distinguishing texture modulations using Independent Component Analysis
PDF (Russian)
PDF

Keywords

texture
modulation
evoked potentials
Independent Component Analysis
dipole source

Abstract

Contrast, orientation and spatial-frequency texture modulations are detected by second-order visual mechanisms. Psychophysical data gives the evidence of the second-order mechanisms selectivity (specificity) to the listed types of modulations. This selectivity can
have different cerebral localization of second-order mechanisms in it’s basis. The aim of current research was to check this assumption using psychophysiological methods. It was shown that evoked activity sources recorded in solving the task of distinguishing types of modulation are located in different cortex areas. This fact is psychophysiological evidence for second-order mechanisms specificity.

https://doi.org/10.21702/rpj.2012.3.7
PDF (Russian)
PDF

References

Бабенко В.В. Новый подход к вопросу о механизмах зрительного восприятия // Проблемы нейрокибернетики. – Ростов н/Д: ИРУ, 1989. – С. 10–11.

Гнездицкий В. Обратная задача ЭЭГ и клиническая электроэнцефалография (картирование и локализация источников электрической активности мозга). – М.: МЕДпресс информ, 2004.

Чернiнський А.О., Собiщанський С.О., Крижановський С.А., Зима І.Г., Піскорська Н.Г., Макарчук М.Ю. Виявлення джерел викликаної активностi головного мозку людини за допомогою алгоритму аналiзу незалежних компонентiв // Фiзика живого. – 2010. – Т. 18. – No 1. – С. 52–60.

Babenko V ., Yavna D. Specificity of the visual second-order machanisms // Perception 37 ECVP Abstract Supplement. – 2008. – P. 78.

Cavanagh P., Mather G. Motion: the long and short of it // Spat. Vis. – 1989. – Vol. 4. – no. 2–3. – P. 103–129.

Chubb C., Landy M. Orthogonal distribution analysis: A new approach to the study of texture perception // Computational Models of Visual Processing / Ed. by M.S. Landy, J.A. Movshon. – Cambridge, Massachusetts: The MIT Press, 1991. – P. 291–301.

Chubb C., Sperling G. Drift-balanced random stimuli: a general basis for studying non-fourier motion perception // J. Opt. Soc. Am. A. – 1988. – Vol. 5. – no. 11. – P. 1986–2007.

Graham N., Beck J., Sutter A. Nonlinear processes in spatial-frequency channel models of perceived texture segregation: effects of sign and amount of contrast // Vision Res. – 1992. – Vol. 32. – no. 4. – P. 719–743.

Kingdom F., Prins N., Hayes A. Mechanism independence for texture-modulation detection is consistent with a filter-rectify-filter mechanism // Vis. Neurosci. – 2003. – Vol. 20. – no. 1. – P. 65–76.

Lancaster J., Woldorff M., Parsons L., Liotti M., Freitas C., Rainey L., Kochunov P., Nickerson D., Mikiten S., Fox P. Automated talairach atlas labels for functional brain mapping // Hum. Brain Mapp. – 2000. – Vol. 10. – no. 3. – P. 120–131.

Talairach J., Tournoux P. Co-planar stereotaxic atlas of the human brain. –Thieme, New York, 1988.

Wilson H. Non-fourier cortical processes in texture, form, and motion perception // Cerebral Cortex. – 1999. – Vol. 13. – P. 445–477.