Abstract
Introduction. The study investigates the psychophysiological mechanisms of melody perception and internal repetition in healthy individuals and patients with schizophrenia. The study primarily focuses on differences in neural processing of monophonic and polyphonic musical stimuli, providing deeper insight into the cognitive and neural features associated with schizophrenia.
Methods. The study involved 53 female participants divided into two groups: 25 patients diagnosed with schizophrenia (F20 according to ICD-10) and 28 healthy volunteers. Brain activity was recorded using 19-channel EEG, followed by data processing with the "Virtual Implanted Electrode" method, which allowed for the analysis of activity and functional connectivity in 53 brain structures. Participants performed a task involving the extraction and internal repetition of a monophonic line from polyphonic musical stimuli.
Results. The experiment revealed that in healthy individuals, activation occurs in visual areas, the supramarginal gyrus, and the right basal ganglia, ensuring accurate internal reproduction of the musical motif. In schizophrenia, weakened connectivity was observed in the left supramarginal gyrus, along with heightened activity in areas associated with polyphony perception, indicating difficulties in maintaining and reproducing relevant musical components.
Discussion. The findings demonstrate differences in the neural mechanisms of musical stimulus processing in schizophrenia. Weakened connectivity in control areas and heightened activity in perception regions may explain difficulties in accurate melody reproduction. The results highlight the role of subcortical structures in compensatory processes and open new avenues for research into cognitive impairments in schizophrenia.
References
Бахтин, О. М., Кривко, Е. М., Кирой, В. Н. (2020). Электромиографические компоненты, ассоциированные с внутренней речью. Журнал медико-биологических исследований, 8(2), 111–120.
Вартанов, А. В. (2023). Новый подход к пространственной локализации электрической активности по данным ЭЭГ. Эпилепсия и пароксизмальные состояния, 15(4), 326–338.
Крысько, М., Вартанов, А., Бронов, О. (2024). Verbal component suppression during internal representation of songs: fMRI-study. Психологические исследования, 17(94), 2–2.
Машеров, Е. Л. (2019). Электрохимическая обратная связь, как один из возможных механизмов генерации низкочастотной составляющей биоэлектрической активности мозга. Биофизика, 64(3), 572–577.
Холиков, К. Б. (2023). Сложная система мозга: в гармонии, не в тональности и не введении. Science and Education, 4(7), 206–213.
Bhattacharya, J., & Petsche, H. (2005). Drawing on mind's canvas: Differences in cortical integration patterns between artists and non‐artists. Human Brain Mapping, 26(1), 1–14.
Chiang, J. N., Rosenberg, M. H., Bufford, C. A., Stephens, D., Lysy, A., & Monti, M. M. (2018). The language of music: Common neural codes for structured sequences in music and natural language. Brain and Language, 185, 30–37.
Deutsch, D. (1999). Grouping mechanisms in music. In The Psychology of Music (pp. 299–348). Academic Press.
Dutterer, J., Bansal, S., Robinson, B., & Gold, J. M. (2023). Sustained attention deficits in schizophrenia: Effect of memory load on the Identical Pairs Continuous Performance Test. Schizophrenia Research: Cognition, 33, 100288.
Eggermont, J. J. (2023). Brain Responses to Auditory Mismatch and Novelty Detection: Predictive Coding from Cocktail Parties to Auditory-Related Disorders. Elsevier.
Ford, J. M., & Mathalon, D. H. (2004). Electrophysiological evidence of corollary discharge dysfunction in schizophrenia during talking and thinking. Journal of Psychiatric Research, 38(1), 37–46.
Fujito, R., Minese, M., Hatada, S., Kamimura, N., Morinobu, S., Lang, D. J., Sawada, K. (2018). Musical deficits and cortical thickness in people with schizophrenia. Schizophrenia Research, 197, 233–239.
Gabriel, D., Wong, T. C., Nicolier, M., Giustiniani, J., Mignot, C., Noiret, N., Vandel, P. (2016). Don’t forget the lyrics! Spatiotemporal dynamics of neural mechanisms spontaneously evoked by gaps of silence in familiar and newly learned songs. Neurobiology of Learning and Memory, 132, 18–28.
Halpern, A. R., Zatorre, R. J., Bouffard, M., & Johnson, J. A. (2004). Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42(9), 1281–1292.
Huberth, M., Fujioka, T. (2017). Neural representation of a melodic motif: Effects of polyphonic contexts. Brain and Cognition, 111, 144–155.
Kraemer, D. J., Macrae, C. N., Green, A. E., Kelley, W. M. (2005). Sound of silence activates auditory cortex. Nature, 434(7030), 158–158.
Kunert, R., Willems, R. M., Casasanto, D., Patel, A. D., Hagoort, P. (2015). Music and language syntax interact in Broca’s area: an fMRI study. PLOS ONE, 10(11), e0141069.
Liikkanen, L. A. (2008). Music in everymind: Commonality of involuntary musical imagery. In 10th International Conference of Music Perception and Cognition, Sapporo, Japan, August 2008 (pp. 1–5).
Maess, B., Koelsch, S., Gunter, T. C., Friederici, A. D. (2001). Musical syntax is processed in Broca's area: An MEG study. Nature Neuroscience, 4(5), 540–545.
Minguillon, J., Lopez-Gordo, M. A., Pelayo, F. (2017). Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomedical Signal Processing and Control, 31, 407–418.
Olszewska, A. M., Droździel, D., Gaca, M., Kulesza, A., Obrębski, W., Kowalewski, J., Herman, A. M. (2023). Unlocking the musical brain: A proof-of-concept study on playing the piano in MRI scanner with naturalistic stimuli. Heliyon, 9(7).
Palmer, S. E., Schloss, K. B., Xu, Z., Prado-León, L. R. (2013). Music–color associations are mediated by emotion. Proceedings of the National Academy of Sciences, 110(22), 8836–8841.
Putkinen, V., Zhou, X., Gan, X., Yang, L., Becker, B., Sams, M., Nummenmaa, L. (2024). Bodily maps of musical sensations across cultures. Proceedings of the National Academy of Sciences, 121(5), e2308859121.
Riva, D., Taddei, M., Bulgheroni, S. (2018). The neuropsychology of basal ganglia. European Journal of Paediatric Neurology, 22(2), 321–326.
Sass, L. A., Parnas, J. (2007). Explaining schizophrenia: The relevance of phenomenology. In Reconceiving Schizophrenia (pp. 63–95).
Schaefer, R. S., Vlek, R. J., Desain, P. (2011). Music perception and imagery in EEG: Alpha band effects of task and stimulus. International Journal of Psychophysiology, 82(3), 254–259.
Senn, O. (2023). A predictive coding approach to modelling the perceived complexity of popular music drum patterns. Heliyon, 9(4).
Smith, M. (2022). Engaging characters: Fiction, emotion, and the cinema. Oxford University Press.
Uhlhaas, P. J., Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100–113.
Uhlig, M., Fairhurst, M. T., Keller, P. E. (2013). The importance of integration and top-down salience when listening to complex multi-part musical stimuli. NeuroImage, 77, 52–61.
Vartanov, A. V. (2022). A new method of localizing brain activity using the scalp EEG data. Procedia Computer Science, 213, 41–48.
Vuong, V., Hewan, P., Perron, M., Thaut, M., Alain, C. (2023). The neural bases of familiar music listening in healthy individuals: An activation likelihood estimation meta-analysis. Neuroscience & Biobehavioral Reviews, 105423.
Zatorre, R. J., Halpern, A. R. (2005). Mental concerts: Musical imagery and auditory cortex. Neuron, 47(1), 9–12.
Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E., Evans, A. C. (1996). Hearing in the mind's ear: A PET investigation of musical imagery and perception. Journal of Cognitive Neuroscience, 8(1), 29–46.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Russian Psychological Journal