Abstract
Введение. Современные требования к профессиональной деятельности в научно-технических областях подчеркивают необходимость учета как инженерных, так и пространственных способностей при отборе студентов для углубленного обучения в STEM-дисциплинах. Комплексная оценка этих навыков может повысить эффективность обучения и увеличить количество высококвалифицированных специалистов в STEM-секторе. Целью настоящего исследования являлась разработка валидной и надежной шкалы, направленной на оценку собственных пространственных и инженерных способностей. Методы. Выборка составила 5062 учащихся высших учебных заведений России в возрасте от 18 до 25 лет (средний возраст 18,35 лет). В рамках анализа психометрических свойств шкалы применялся эксплораторный, конфирматорный и многогрупповой факторный анализ. Результаты. Факторный анализ выявил четырехфакторную структуру из 10 утверждений, показатели соответствия модели находилась в диапазоне отличных значений. Выявленные факторы «Ориентация», «Инженерия», «Вращение» и «Визуализация» в совокупности объясняли 52% общей дисперсии. Факторные нагрузки варьировались от 0,72 до 0,98, что подтверждает высокую надежность каждого отдельного утверждения. Показатель альфа Кронбаха для всей шкалы составил 0,85, указывая на высокую внутреннюю согласованность. Сравнительный анализ средних значений для верхних и нижних 27% выборки продемонстрировал значимые различия по всем пунктам шкалы. Анализ средних значений в гендерных группах выявил значимые различия по четырем выявленным факторам. Анализ инвариантности измерений показал, что шкала соответствует конфигурационной, слабой и сильной типам инвариантности. Обсуждение результатов. Факторная структура шкалы соответствует представлению о пространственных способностях «большого» и «малого» масштаба. Новизна данного исследования заключается в валидизации первой русскоязычной шкалы, обеспечивающей краткую и комплексную оценку как пространственных, так и инженерных способностей, что имеет важное значение для образовательной и профессиональной практики.
References
Алексеева, О. С., Ржанова (Козлова), И. Е., Бритова, В. С., Николаева, А. Ю., Бурдукова, Ю. А. (2021). Диагностика флюидного интеллекта и его связь с другими когнитивными способностями в младшем школьном возрасте. Вопросы Психологии, 1, 50–61.
Ануфриева, Т. Н. (2023). Компонентный состав гибких навыков современного инженера. Научно-педагогическое обозрение. Pedagogical Review, 4 (50).
Аристова, И. Л., Есипенко, Е. А., Шарафиева, К. Р., Масленникова, Е. П., Чипеева, Н. А., Фекличева, И. В., Солдатова, Е. Л., Фенин, А. Ю., Исматуллина, В. И., & Малых, С. Б. (2018). Пространственные способности: Структура и этиология. Вопросы Психологии, 1, 118–126.
Батова, А. А. (2021). Обзор методик и приемов диагностики пространственного мышления младших школьников. Молодой ученый, 42(384), 173–175.
Двойнин, А. М., & Троцкая, Е. С. (2022). Когнитивные предикторы академической успешности: Как общие закономерности «работают» на ранних этапах образования? Психологическая наука и образование, 27(2), 42–52. https://doi.org/10.17759/pse.2022270204
Завьялова (Майсейченко), И. Ю., Солдатова, Е. Л., & Малых, С. Б. (2020). Пространственные способности как предикторы академической успешности в Stem. Сборник «Стратегические ориентиры современного образования», часть 3, 200–203. https://doi.org/10.26170/Kso-2020-263
Лиханов, М. В., Цигеман, Ц. Э., & Ковас, Ю. В. (2020). Короткая онлайн батарея пространственных способностей (OSSAB): Психометрические нормы для школьников старшего возраста. Сибирский Психологический Журнал, 78, 117–129. https://doi.org/10.17223/17267080/78/7
Троцкая, Е. С. (2017). Методы диагностики пространственного мышления младших школьников. Известия института педагогики и психологии образования, 1, 86–91.
Ackerman, P. L., Kanfer, R., & Beier, M. E. (2013). Trait complex, cognitive ability, and domain knowledge predictors of baccalaureate success, STEM persistence, and gender differences. Journal of Educational Psychology, 105(3), 911–927. https://doi.org/10.1037/a0032338
Adya, M., & Kaiser, K. M. (2005). Early determinants of women in the IT workforce: A model of girls’ career choices. Information Technology & People, 18(3), 230–259. https://doi.org/10.1108/09593840510615860
Ahern, A., Dominguez, C., McNally, C., O’Sullivan, J. J., & Pedrosa, D. (2019). A literature review of critical thinking in engineering education. Studies in Higher Education, 44(5), 816–828. https://doi.org/10.1080/03075079.2019.1586325
Antoshchuk, I. A. (2021). Moving through the STEM pipeline: A systematic literature review of the gender inequality in russian engineering. Мониторинг общественного мнения: экономические и социальные перемены, 3.
Berkowitz, M., & Stern, E. (2018). Which Cognitive Abilities Make the Difference? Predicting Academic Achievements in Advanced STEM Studies. Journal of Intelligence, 6(4), Article 4. https://doi.org/10.3390/jintelligence6040048
Blajenkova, O., Motes, M. A., & Kozhevnikov, M. (2005). Individual differences in the representations of novel environments. Journal of Environmental Psychology, 25(1), 97–109. https://doi.org/10.1016/j.jenvp.2004.12.003
Brotman, J. S., & Moore, F. M. (2008). Girls and science: A review of four themes in the science education literature. Journal of Research in Science Teaching, 45(9), 971–1002. https://doi.org/10.1002/tea.20241
Buckley, J., Seery, N., & Canty, D. (2018). A Heuristic Framework of Spatial Ability: A Review and Synthesis of Spatial Factor Literature to Support its Translation into STEM Education. Educational Psychology Review, 30(3), 947–972. https://doi.org/10.1007/s10648-018-9432-z
Buckley, J., Seery, N., Canty, D., & Gumaelius, L. (2022). The Importance of Spatial Ability Within Technology Education. In P. J. Williams & B. von Mengersen (Eds.), Applications of Research in Technology Education: Helping Teachers Develop Research-Informed Practice (pp. 165–182). Springer Nature. https://doi.org/10.1007/978-981-16-7885-1_11
Casey, B. M. (2013). Individual and group differences in spatial ability. In Handbook of spatial cognition (pp. 117–134). American Psychological Association. https://doi.org/10.1037/13936-007
Ceci, S. J., & Williams, W. M. (2010). Sex Differences in Math-Intensive Fields. Current Directions in Psychological Science, 19(5), 275–279. https://doi.org/10.1177/0963721410383241
Charlesworth, T. E. S., & Banaji, M. R. (2019). Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions. Journal of Neuroscience, 39(37), 7228–7243. https://doi.org/10.1523/JNEUROSCI.0475-18.2019
Chen, F. F. (2007). Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 420–464). Macmillan Publishing Co, Inc.
Cropley, D. H. (2016). Creativity in Engineering. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary Contributions to the Science of Creative Thinking (pp. 155–173). Springer. https://doi.org/10.1007/978-981-287-618-8_10
De Beni, R., Pazzaglia, F., & Gardini, S. (2006). The Role of Mental Rotation and Age in Spatial Perspective-Taking Tasks: When Age does not Impair Perspective-Taking Performance. Applied Cognitive Psychology, 20(6), 807–821. https://doi.org/10.1002/acp.1229
Frank, M. (2006). Knowledge, abilities, cognitive characteristics and behavioral competences of engineers with high capacity for engineering systems thinking (CEST). INCOSE Journal of Systems Engineering, 9(2), 91–103.
Groeneveld, W., Jacobs, H., Vennekens, J., & Aerts, K. (2020). Non-cognitive Abilities of Exceptional Software Engineers: A Delphi Study. Proceedings of the 51st ACM Technical Symposium on Computer Science Education, 1096–1102. https://doi.org/10.1145/3328778.3366811
Ha, O., & Fang, N. (2016). Spatial Ability in Learning Engineering Mechanics: Critical Review. Journal of Professional Issues in Engineering Education and Practice, 142(2), 04015014. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000266
Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The Science of Sex Differences in Science and Mathematics. Psychological Science in the Public Interest: A Journal of the American Psychological Society, 8(1), 1–51. https://doi.org/10.1111/j.1529-1006.2007.00032.x
Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/10.1016/j.intell.2003.12.001
Hegarty, M., & Waller, D. A. (2005). Individual Differences in Spatial Abilities. In The Cambridge Handbook of Visuospatial Thinking (pp. 121–169). Cambridge University Press. https://doi.org/10.1017/CBO9780511610448.005
Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? Quarterly Journal of Experimental Psychology (2006), 61(5), 683–689. https://doi.org/10.1080/17470210701822967
Hidayat, R., Nugroho, I., Zainuddin, Z., & Ingai, T. A. (2023). A systematic review of analytical thinking skills in STEM education settings. Information and Learning Sciences, 125(7/8), 565–586. https://doi.org/10.1108/ILS-06-2023-0070
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Jansen, P. (2009). The dissociation of small- and large-scale spatial abilities in school-age children. Perceptual and Motor Skills, 109(2), 357–361. https://doi.org/10.2466/PMS.109.2.357-361
Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24(9), 1831–1836. https://doi.org/10.1177/0956797613478615
Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745–756. https://doi.org/10.3758/BF03200477
Liu, S., Wei, W., Chen, Y., Hugo, P., & Zhao, J. (2021). Visual–Spatial Ability Predicts Academic Achievement Through Arithmetic and Reading Abilities. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.591308
Lohman, D. F. (1996). Spatial Ability and g. In Human Abilities. Psychology Press.
Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Journal of Cognition and Development, 20(5), 729–751. https://doi.org/10.1080/15248372.2019.1653298
Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344–351. https://doi.org/10.1016/j.paid.2010.03.022
Maeda, Y., & Yoon, S. Y. (2013). A Meta-Analysis on Gender Differences in Mental Rotation Ability Measured by the Purdue Spatial Visualization Tests: Visualization of Rotations (PSVT:R). Educational Psychology Review, 25(1), 69–94. https://doi.org/10.1007/s10648-012-9215-x
Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: Assessment and relations with cognitive abilities. Learning and Instruction, 29, 43–55. https://doi.org/10.1016/j.learninstruc.2013.07.005
Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141–152. https://doi.org/10.1016/j.lindif.2012.03.012
Miller, R. K. (2017). Building on Math and Science: The New Essential Skills for the 21st-Century Engineer. Research Technology Management, 60(1), 53–56.
Morris, R. G., & Parslow, D. (2003). Neurocognitive Components of Spatial Memory. In Human Spatial Memory. Psychology Press.
Newcombe, N., Huttenlocher, J., & Learmonth, A. (1999). Infants’ coding of location in continuous space. Infant Behavior and Development, 22(4), 483–510. https://doi.org/10.1016/S0163-6383(00)00011-4
Revelle, W. (2025). psych: Procedures for Psychological, Psychometric, and Personality Research (p. 2.4.6.26) [Dataset]. https://doi.org/10.32614/CRAN.package.psych
Silverman, I., Choi, J., & Peters, M. (2007). The Hunter-Gatherer Theory of Sex Differences in Spatial Abilities: Data from 40 Countries. Archives of Sexual Behavior, 36(2), 261–268. https://doi.org/10.1007/s10508-006-9168-6
Sorby, S. A. (2009). Educational Research in Developing 3‐D Spatial Skills for Engineering Students. International Journal of Science Education, 31(3), 459–480. https://doi.org/10.1080/09500690802595839
Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20–29. https://doi.org/10.1016/j.lindif.2013.03.010
Sorby, S., Veurink, N., & Streiner, S. (2018). Does spatial skills instruction improve STEM outcomes? The answer is ‘yes.’ Learning and Individual Differences, 67, 209–222. https://doi.org/10.1016/j.lindif.2018.09.001
Stieff, M., & Uttal, D. (2015). How Much Can Spatial Training Improve STEM Achievement? Educational Psychology Review, 27(4), 607–615. https://doi.org/10.1007/s10648-015-9304-8
Suh, J., & Cho, J. Y. (2020). Linking spatial ability, spatial strategies, and spatial creativity: A step to clarify the fuzzy relationship between spatial ability and creativity. Thinking Skills and Creativity, 35. https://doi.org/10.1016/j.tsc.2020.100628
Uttal, D. H., & Cohen, C. A. (2012). Chapter Four - Spatial Thinking and STEM Education: When, Why, and How? In B. H. Ross (Ed.), Psychology of Learning and Motivation (Vol. 57, pp. 147–181). Academic Press. https://doi.org/10.1016/B978-0-12-394293-7.00004-2
Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: Links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373. https://doi.org/10.1177/0963721413484756
Van de Schoot, R., Lugtig, P., & Hox, J. (2012). A checklist for testing measurement invariance. European Journal of Developmental Psychology, 9(4), 486–492. https://doi.org/10.1080/17405629.2012.686740
Vandenberg, R. J. & Lance Ch.e. (2000). A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research. Organizational Research Methods, 3(1), 4–70. https://doi.org/10.1177/109442810031002
Veurink, N., & Sorby, S. (2017). Longitudinal study of the impact of requiring training for students with initially weak spatial skills. European Journal of Engineering Education, 44, 1–11. https://doi.org/10.1080/03043797.2017.1390547
Vuoksimaa, E., Viken, R. J., Hokkanen, L., Tuulio-Henriksson, A., Rose, R. J., & Kaprio, J. (2010). Are There Sex Differences in the Genetic and Environmental Effects on Mental Rotation Ability? Twin Research and Human Genetics, 13(5), 437–441. https://doi.org/10.1375/twin.13.5.437
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127
Wang, L., Cohen, A. S., & Carr, M. (2014). Spatial ability at two scales of representation: A meta-analysis. Learning and Individual Differences, 36, 140–144. https://doi.org/10.1016/j.lindif.2014.10.006
Weiss, E., Siedentopf, C. M., Hofer, A., Deisenhammer, E. A., Hoptman, M. J., Kremser, C., Golaszewski, S., Felber, S., Fleischhacker, W. W., & Delazer, M. (2003). Sex differences in brain activation pattern during a visuospatial cognitive task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 344(3), 169–172. https://doi.org/10.1016/S0304-3940(03)00406-3
Yoon, S. Y., & Mann, E. L. (2017). Exploring the spatial ability of undergraduate students: Association with gender, STEM majors, and gifted program membership. Gifted Child Quarterly, 61(4), 313–327. https://doi.org/10.1177/0016986217722614
Zacks, J. M., Mires, J., Tversky, B., & Hazeltine, E. (2000). Mental spatial transformations of objects and perspective. Spatial Cognition and Computation, 2(4), 315–332. https://doi.org/10.1023/A:1015584100204

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Russian Psychological Journal