Исследования несимволического чувства числа с помощью айтрекинга: систематический обзор
PDF (Russian)

Keywords

несимволическое чувство числа
несимволическая репрезентация количества
айтрекинг
саккады
зрительные фиксации

Abstract

Введение. Обработка количественной информации является одним из базовых процессов, обеспечивающих успешное взаимодействие человека с окружением. В той или иной форме способность обработки количественной информации обнаруживается у большого количества биологических видов. У людей особенности процесса обработки количественной информации в разных форматах анализируются в экспериментальных и корреляционных исследованиях, с помощью разных методов и подходов, в том числе с помощью айтрекинга. Айтрекинг позволяет выделить механизмы формирования ментальной репрезентации количества и оценить связи системы оценки количества без использования символов с системами репрезентации других визуальных параметров, таких как размер объектов.

Методы. В данной работе представлен систематический обзор айтрекинговых исследований несимволической репрезентации количества, опубликованных с 2008 по 2023 годы. В результате поиска в базах Scopus, Web of Science, PubMed идентифицировано 13 исследований.

Результаты и их обсуждение. Систематизированы исследовательские вопросы, характеристики используемых заданий и стимульных материалов, особенности выборки и полученные результаты, касающиеся исследований несимволического чувства числа и несимволической репрезентации количества. Одной из наиболее часто используемых метрик является место первого взгляда, также исследователями рассматриваются такие показатели, как длительность фиксаций и количество саккад; данные свидетельствуют о наличии отдельного процесса обработки информации о количестве, независимой от оценки других визуальных параметров.  Данный систематический обзор позволяет выделить механизмы работы системы репрезентации количества и особенности организации айтрекинговых исследований для изучения несимволического чувства числа и несимволической репрезентации количества.

https://doi.org/10.21702/ezq4w731
PDF (Russian)

References

Abreu-Mendoza, R. A., & Arias-Trejo, N. (2015). Numerical and area comparison abilities in Down syndrome. Research in Developmental Disabilities, 41–42, 58–65. https://doi.org/10.1016/j.ridd.2015.05.008

Agrillo, C., & Bisazza, A. (2018). Understanding the origin of number sense: A review of fish studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1740), 20160511. https://doi.org/10.1098/rstb.2016.0511

Anobile, G., Arrighi, R., & Burr, D. C. (2019). Simultaneous and sequential subitizing are separate systems, and neither predicts math abilities. Journal of Experimental Child Psychology, 178, 86–103. https://doi.org/10.1016/j.jecp.2018.09.017

Anobile, G., Cicchini, G. M., & Burr, D. C. (2014). Separate Mechanisms for Perception of Numerosity and Density. Psychological Science, 25(1), 265–270. https://doi.org/10.1177/0956797613501520

Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. NeuroReport, 16(16), 1769–1773. https://doi.org/10.1097/01.wnr.0000183905.23396.f1

Arrighi, R., Togoli, I., & Burr, D. C. (2014). A generalized sense of number. Proceedings of the Royal Society B: Biological Sciences, 281(1797), 20141791. https://doi.org/10.1098/rspb.2014.1791

Berch, D. B. (2005). Making Sense of Number Sense: Implications for Children With Mathematical Disabilities. Journal of Learning Disabilities, 38(4), 333–339. https://doi.org/10.1177/00222194050380040901

Brannon, E. M. (2005). What animals know about numbers. Handbook of Mathematical Cognition. (Psychology Press). Campbell JID.

Bulf, H., De Hevia, M. D., & Macchi Cassia, V. (2016). Small on the left, large on the right: Numbers orient visual attention onto space in preverbal infants. Developmental Science, 19(3), 394–401. https://doi.org/10.1111/desc.12315

Burr, D. C., Anobile, G., & Arrighi, R. (2018). Psychophysical evidence for the number sense. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1740), 20170045. https://doi.org/10.1098/rstb.2017.0045

Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10(6), 20–20. https://doi.org/10.1167/10.6.20

Burr, D., & Ross, J. (2008). A Visual Sense of Number. Current Biology, 18(6), 425–428. https://doi.org/10.1016/j.cub.2008.02.052

Calvo, M. G., & Meseguer, E. (2002). Eye Movements and Processing Stages in Reading: Relative Contribution of Visual, Lexical, and Contextual Factors. The Spanish Journal of Psychology, 5(1), 66–77. https://doi.org/10.1017/S1138741600005849

Castaldi, E., Burr, D., Turi, M., & Binda, P. (2020). Fast saccadic eye-movements in humans suggest that numerosity perception is automatic and direct. Proceedings of the Royal Society B: Biological Sciences, 287(1935), 20201884. https://doi.org/10.1098/rspb.2020.1884

Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172. https://doi.org/10.1016/j.actpsy.2014.01.016

Chen, Q., & Verguts, T. (2010). Beyond the mental number line: A neural network model of number–space interactions. Cognitive Psychology, 60(3), 218–240. https://doi.org/10.1016/j.cogpsych.2010.01.001

Cheyette, S. J., & Piantadosi, S. T. (2019). A primarily serial, foveal accumulator underlies approximate numerical estimation. Proceedings of the National Academy of Sciences, 116(36), 17729–17734. https://doi.org/10.1073/pnas.1819956116

Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177–184. https://doi.org/10.1016/j.actpsy.2015.09.007

De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55. https://doi.org/10.1016/j.tine.2013.06.001

Decarli, G., Zingaro, D., Surian, L., & Piazza, M. (2023). Number sense at 12 months predicts 4‐year‐olds’ maths skills. Developmental Science, 26(6), e13386. https://doi.org/10.1111/desc.13386

Dehaene, S. (2001). Precis of The Number Sense. Mind and Language, 16(1), 16–36. https://doi.org/10.1111/1468-0017.00154

Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147. https://doi.org/10.1016/S1364-6613(03)00055-X

Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. https://doi.org/10.1037/0096-3445.122.3.371

de Hevia, M. D., Castaldi, E., Streri, A., Eger, E., & Izard, V. (2017). Perceiving numerosity from birth. Behavioral and Brain Sciences, 40, e169. https://doi.org/10.1017/S0140525X16002090

DeWind, N. K., Park, J., Woldorff, M. G., & Brannon, E. M. (2019). Numerical encoding in early visual cortex. Cortex, 114, 76–89. https://doi.org/10.1016/j.cortex.2018.03.027

Dietrich, J. F., Huber, S., & Nuerk, H.-C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS)» a research review. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00295

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002

Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links Between the Intuitive Sense of Number and Formal Mathematics Ability. Child Development Perspectives, 7(2), 74–79. https://doi.org/10.1111/cdep.12019

Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556. https://doi.org/10.1038/nn1066

Fornaciai, M., & Park, J. (2021). Disentangling feedforward versus feedback processing in numerosity representation. Cortex, 135, 255–267. https://doi.org/10.1016/j.cortex.2020.11.013

Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136–148. https://doi.org/10.1111/desc.12013

Gandini, D., Lemaire, P., & Dufau, S. (2008). Older and younger adults’ strategies in approximate quantification. Acta Psychologica, 129(1), 175–189. https://doi.org/10.1016/j.actpsy.2008.05.009

Gebuis, T., Kadosh, R. C., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta psychologica, 171, 17–35.

Gebuis, T., & Reynvoet, B. (2012). The Role of Visual Information in Numerosity Estimation. PLoS ONE, 7(5), e37426. https://doi.org/10.1371/journal.pone.0037426

Gebuis, T., & Van Der Smagt, M. J. (2011). False Approximations of the Approximate Number System? PLoS ONE, 6(10), e25405. https://doi.org/10.1371/journal.pone.0025405

Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V., & Inglis, M. (2013). Individual Differences in Inhibitory Control, Not Non-Verbal Number Acuity, Correlate with Mathematics Achievement. PLoS ONE, 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374

Gilmore, C., Cragg, L., Hogan, G., & Inglis, M. (2016). Congruency effects in dot comparison tasks: Convex hull is more important than dot area. Journal of Cognitive Psychology, 28(8), 923–931. https://doi.org/10.1080/20445911.2016.1221828

Göbel, S. M., Calabria, M., Farnè, A., & Rossetti, Y. (2006). Parietal rTMS distorts the mental number line: Simulating ‘spatial’ neglect in healthy subjects. Neuropsychologia, 44(6), 860–868. https://doi.org/10.1016/j.neuropsychologia.2005.09.007

Göbel, S., Walsh, V., & Rushworth, M. F. S. (2001). The Mental Number Line and the Human Angular Gyrus. NeuroImage, 14(6), 1278–1289. https://doi.org/10.1006/nimg.2001.0927

Guan, D., Ai, J., Gao, Y., Li, H., Huang, B., & Si, J. (2021). Non-symbolic representation is modulated by math anxiety and cognitive inhibition while symbolic representation not. Psychological Research, 85(4), 1662–1672. https://doi.org/10.1007/s00426-020-01356-7

Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008a). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. https://doi.org/10.1038/nature07246

Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008b). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. https://doi.org/10.1038/nature07246

Harvey, B. M., & Dumoulin, S. O. (2017). A network of topographic numerosity maps in human association cortex. Nature Human Behaviour, 1(2), 0036. https://doi.org/10.1038/s41562-016-0036

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29. https://doi.org/10.1016/j.jecp.2008.04.001

Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448. https://doi.org/10.1038/nrn1684

Hurst, M., & Cordes, S. (2016). Rational-number comparison across notation: Fractions, decimals, and whole numbers. Journal of Experimental Psychology: Human Perception and Performance, 42(2), 281–293. https://doi.org/10.1037/xhp0000140

Irwin, D. E., & Thomas, L. E. (2007). The effect of saccades on number processing. Perception & Psychophysics, 69(3), 450–458. https://doi.org/10.3758/BF03193765

Klein, E., & Knops, A. (2023). The two-network framework of number processing: A step towards a better understanding of the neural origins of developmental dyscalculia. Journal of Neural Transmission, 130(3), 253–268. https://doi.org/10.1007/s00702-022-02580-8

Kohl, C., McIntosh, E. J., Unger, S., Haddaway, N. R., Kecke, S., Schiemann, J., & Wilhelm, R. (2018). Online tools supporting the conduct and reporting of systematic reviews and systematic maps: A case study on CADIMA and review of existing tools. Environmental Evidence, 7(1), 8. https://doi.org/10.1186/s13750-018-0115-5

Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373–379. https://doi.org/10.1016/j.actpsy.2012.09.009

Lilienthal, A.J., Schindler, M. (2019). Eye tracking research in mathematics education: A PME literature review. Eye tracking research in mathematics education: A PME literature review, 4, 62.

Lindskog, M., Poom, L., & Winman, A. (2021). Attentional bias induced by stimulus control (ABC) impairs measures of the approximate number system. Attention, Perception, & Psychophysics, 83(4), 1684–1698. https://doi.org/10.3758/s13414-020-02229-2

Lourenco, S. F., & Longo, M. R. (2011). Origins and Development of Generalized Magnitude Representation. В Space, Time and Number in the Brain (сс. 225–244). Elsevier. https://doi.org/10.1016/B978-0-12-385948-8.00015-3

Lyons, I. M., Nuerk, H.-C., & Ansari, D. (2015). Rethinking the implications of numerical ratio effects for understanding the development of representational precision and numerical processing across formats. Journal of Experimental Psychology: General, 144(5), 1021–1035. https://doi.org/10.1037/xge0000094

Merkley, R., & Ansari, D. (2010). Using eye tracking to study numerical cognition: The case of the ratio effect. Experimental Brain Research, 206(4), 455–460. https://doi.org/10.1007/s00221-010-2419-8

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417. https://doi.org/10.1016/0166-2236(83)90190-X

Mock, J., Huber, S., Bloechle, J., Dietrich, J. F., Bahnmueller, J., Rennig, J., Klein, E., & Moeller, K. (2018). Magnitude processing of symbolic and non-symbolic proportions: An fMRI study. Behavioral and Brain Functions, 14(1), 9. https://doi.org/10.1186/s12993-018-0141-z

Mock, J., Huber, S., Klein, E., & Moeller, K. (2016). Insights into numerical cognition: Considering eye-fixations in number processing and arithmetic. Psychological Research, 80(3), 334–359. https://doi.org/10.1007/s00426-015-0739-9

Nemeh, F., Humberstone, J., Yates, M. J., & Reeve, R. A. (2018). Non-symbolic magnitudes are represented spatially: Evidence from a non-symbolic SNARC task. PLOS ONE, 13(8), e0203019. https://doi.org/10.1371/journal.pone.0203019

Nieder, A. (2018). Evolution of cognitive and neural solutions enabling numerosity judgements: Lessons from primates and corvids. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1740), 20160514. https://doi.org/10.1098/rstb.2016.0514

Nuerk, H.-C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the Mental Number Line: A Review of Multi-Digit Number Processing. Zeitschrift Für Psychologie, 219(1), 3–22. https://doi.org/10.1027/2151-2604/a000041

Odic, D., & Halberda, J. (2015). Eye movements reveal distinct encoding patterns for number and cumulative surface area in random dot arrays. Journal of Vision, 15(15), 5. https://doi.org/10.1167/15.15.5

Odic, D., & Starr, A. (2018). An Introduction to the Approximate Number System. Child Development Perspectives, 12(4), 223–229. https://doi.org/10.1111/cdep.12288

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71

Pannasch, S., Helmert, J. R., Roth, K., Herbold, A.-K., & Walter, H. (2008). Visual Fixation Durations and Saccade Amplitudes: Shifting Relationship in a Variety of Conditions. Journal of Eye Movement Research, 2(2). https://doi.org/10.16910/jemr.2.2.4

Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278–293. https://doi.org/10.1016/j.jecp.2016.07.011

Peake, C., Moscoso-Mellado, J., & Guerra, E. (2020). First fixation duration as a bottom-up measure during symbolic and non-symbolic numerical comparisons (La duración de la primera fijación como medida bottom-up al comparar cantidades simbólicas y no simbólicas). Studies in Psychology, 41(3), 563–579. https://doi.org/10.1080/02109395.2020.1794717

Price, G. R., Wilkey, E. D., & Yeo, D. J. (2017). Eye-movement patterns during nonsymbolic and symbolic numerical magnitude comparison and their relation to math calculation skills. Acta Psychologica, 176, 47–57. https://doi.org/10.1016/j.actpsy.2017.03.012

Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does Subitizing Reflect Numerical Estimation? Psychological Science, 19(6), 607–614. https://doi.org/10.1111/j.1467-9280.2008.02130.x

Sasanguie, D., De Smedt, B., & Reynvoet, B. (2017). Evidence for distinct magnitude systems for symbolic and non-symbolic number. Psychological research, 81(1), 231–242.

Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly journal of experimental psychology, 67(2), 271–280.

Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418–431. https://doi.org/10.1016/j.jecp.2012.10.012

Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372. https://doi.org/10.1111/desc.12372

Schutz, A. C. (2012). There’s more behind it: Perceived depth order biases perceived numerosity/density. Journal of Vision, 12(12), 9–9. https://doi.org/10.1167/12.12.9

Smets, K., Moors, P., & Reynvoet, B. (2016). Effects of Presentation Type and Visual Control in Numerosity Discrimination: Implications for Number Processing? Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00066

Strohmaier, A. R., MacKay, K. J., Obersteiner, A., & Reiss, K. M. (2020). Eye-tracking methodology in mathematics education research: A systematic literature review. Educational Studies in Mathematics, 104(2), 147–200. https://doi.org/10.1007/s10649-020-09948-1

Szűcs, D., Nobes, A., Devine, A., Gabriel, F. C., & Gebuis, T. (2013). Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00444

Toomarian, E. Y., & Hubbard, E. M. (2018). On the genesis of spatial-numerical associations: Evolutionary and cultural factors co-construct the mental number line. Neuroscience & Biobehavioral Reviews, 90, 184–199. https://doi.org/10.1016/j.neubiorev.2018.04.010

Van Herwegen, J., Ranzato, E., Karmiloff-Smith, A., & Simms, V. (2019). Eye Movement Patterns and Approximate Number Sense Task Performance in Williams Syndrome and Down Syndrome: A Developmental Perspective. Journal of Autism and Developmental Disorders, 49(10), 4030–4038. https://doi.org/10.1007/s10803-019-04110-0

Van Herwegen, J., Ranzato, E., Karmiloff‐Smith, A., & Simms, V. (2020). The foundations of mathematical development in Williams syndrome and Down syndrome. Journal of Applied Research in Intellectual Disabilities, 33(5), 1080–1089. https://doi.org/10.1111/jar.12730

Velichkovsky B. et al. (2005). Two visual systems and their eye movements: Evidence from static and dynamic scene perception. Two visual systems and their eye movements: Evidence from static and dynamic scene perception, 2283–2288.

Viarouge, A., Houdé, O., & Borst, G. (2019). Evidence for the role of inhibition in numerical comparison: A negative priming study in 7- to 8-year-olds and adults. Journal of Experimental Child Psychology, 186, 131–141. https://doi.org/10.1016/j.jecp.2019.05.011

Viktorsson, C., Lindskog, M., Li, D., Tammimies, K., Taylor, M. J., Ronald, A., & Falck‐Ytter, T. (2023). Infants’ sense of approximate numerosity: Heritability and link to other concurrent traits. Developmental Science, 26(4), e13347. https://doi.org/10.1111/desc.13347

Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. https://doi.org/10.1016/j.tics.2003.09.002

Wilkey, E. D., Barone, J. C., Mazzocco, M. M. M., Vogel, S. E., & Price, G. R. (2017). The effect of visual parameters on neural activation during nonsymbolic number comparison and its relation to math competency. NeuroImage, 159, 430–442. https://doi.org/10.1016/j.neuroimage.2017.08.023

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Russian Psychological Journal