Abstract
Introduction. The processes of information selection and memorisation undergo changes during ontogeny of the controlling functional systems of the brain, including the formation of inhibitory control associated with the organisation of proactive interference. The aim of the present study was to investigate the regularities of changes in the volume of memorisation of visually presented information at different stages of ontogeny (in the age range from 5 to 78 years) due to both the action of proactive interference and the activity of learning in the process of reproduction during testing. Methods. A total of 563 participants, including preschool and school-aged children, students, and retired people, took part in the study. To investigate inhibitory functions in memory processes, a computerised technique was used to study the memorisation of the same set of visual stimuli presented in different order in three series. A new series was started after the subject made an error in the previous series. Results. Nonlinear changes of proactive interference (RIF) during the reproduction of visual information in ontogeny were found: proactive interference is less pronounced at preschool age, reaches its maximum expression in students at the age of 20 years and remains at a high level in the elderly when the volume of reproduced material decreases. Comparison of proactive interference in people with different memory productivity revealed that the expression of proactive interference is higher at high productivity levels regardless of age and interference is insignificant in people with low memory productivity. Relationship of interference with gender was found only in preschool and junior high school age: proactive interference is higher in girls. possibly due to the speed of brain maturation in this age range in boys and girls. Discussion. It is shown that the critical period for the formation of proactive interference is the age range of 6-8 years, when the severity of interference depends on gender, which is probably due to the conditions of brain maturation in boys and girls. Proactive interference reaches its highest expression in students at the age of 20 and then gradually decreases in old age.
References
Николаева, Е. И. (2010). Психология детского творчества. Питер.
Николаева, Е. И. (2011). Эволюционные корни креативности. В: Творчество: от биологических оснований к социально-культурным феноменам. Д. В. Ушаков (ред.). Издательство «Институт психологии РАН».
Николаева, Е. И. (2019). Исполнительные функции в раннем детстве. Обзор иностранных источников. Комплексные исследования детства, 1(4), 330–337. https://doi.org/10.33910/2687-0223-2019-1-4-330-337
Николаева, Е. И., Вергунов, Е. Г. (2017). Что такое «executive functions» и их развитие в онтогенезе. Теоретическая и экспериментальная психология, 10(2), 62–81.
Разумникова, О. М. (2015). Закономерности старения мозга и способы активации его компенсаторных ресурсов. Успехи физиологических наук, 46(2), 3–16.
Разумникова, О. М. (2019). Возрастные особенности соотношения тормозных функций исполнительной системы внимания и зрительно-образной памяти. Экспериментальная психология, 12(2), 61–74.
Разумникова, О. М., Асанова, Н. В. (2018). Мотивационные индукторы поведения как резервы успешного старения. Успехи геронтологии, 31(5), 737–742.
Разумникова, О. М., Николаева, Е. И. (2019). Тормозные функции мозга и возрастные особенности организации когнитивной деятельности. Успехи физиологических наук, 50(1), 75–89.
Разумникова, О. М., Николаева, Е. И. (2019). Возрастные особенности тормозного контроля в модели проактивной интерференции. Вопросы психологии, 2, 124 –132.
Разумникова, О. М., Николаева, Е. И. (2021). Онтогенез тормозного контроля когнитивных функций и поведения. Издательство НГТУ.
Разумникова, О. М., Савиных, М. А. (2016). Программный комплекс для определения характеристик зрительно-пространственной памяти. Авторское свидетельство 2016617675.
Anderson, M. C. (2003). Rethinking interference theory: executive control and the mechanisms of forgetting. Journal of Memory and Language, 49, 415–445. https://doi.org/10.1016/j.jml.2003.08.006
Anderson, M. C., Reinholz, J., Kuhl, B., & Mayr, U. (2011). Intentional suppression of unwanted memories grows more difficult as we age. Psychology and Aging, 26, 397–405.
Aslan, A., & Bauml, K.-H. T. (2011). Individual differences in working memory capacity predict retrieval-induced forgetting. Journal of Experimental Psychology Learning, Memory, and Cognition, 37(1), 264–269.
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology, 108, 44–79. https://doi.org//10.1016/j.pneurobio.2013.06.005
Bennett, P. J., Sekuler, A. B., McIntosh, A. R., & Della-Maggiore, V. (2001). The effects of aging on visual memory: evidence for functional reorganization of cortical networks. Acta Psychologica (Amst), 107(1–3), 249–273. https://doi.org/10.1016/s0001-6918(01)00037-3
Brockmole, J. R., & Logie, R. H. (2013). Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Frontiers in Psychology, 29(4). https://doi.org/ 10.3389/fpsyg.2013.00012
Chaku, N., & Hoyt, L. T. (2019). Developmental trajectories of executive functioning and puberty in boys and girls. Journal of Youth and Adolescence, 48(7), 1365–1378. https://doi.org/ 10.1007/s10964-019-01021-2
Collette, F., Schmidt, C., Scherrer, C., Adam, S., & Salmon, E. (2009). Specificity of inhibitory deficits in normal aging and Alzheimer's disease. Neurobiology of Aging, 30(6), 875–889. https://doi.org/10.1016/j.neurobiolaging.2007.09.007
Depue, B. E. (2012). A neuroanatomical model of prefrontal inhibitory modulation of memory retrieval. Neuroscience & Biobehavioral Reviews, 36(5), 1382–1399. https://doi.org/10.1016/j.neubiorev.2012.02.012
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186 –204.
Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R.T., & D’Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105, 13122–13126. https://doi.org/10.1073/pnas.0806074105
Grégoire, S., Rivalan, M., Le Moine, C., & Dellu-Hagedorn, F. (2012). The synergy of working memory and inhibitory control: Behavioral, pharmacological and neural functional evidences. Neurobiology of Learning and Memory, 97, 202–212.
Healey, M. K., Hasher, L., & Campbell, K. L. (2013). The role of suppression in resolving interference: evidence for an age-related deficit. Psychology of Aging, 28(3), 721–728. https://doi.org/10.1037/a0033003
Karpicke, J. D., & Blunt, J. B. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331, 772–775. https://doi.org/10.1126/science.1199327
Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., & Chahal, R. (2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151–170. https://doi.org/10.1146/annurev-neuro-071714-034054
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J. et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108, 2693–2698. https://doi.org/10.1073/pnas.1010076108
Murayama, K., Miyatsu, T., Buchli, D., & Storm, B. C. (2014). Forgetting as a consequence of retrieval: A meta-analytic review of retrieval induced forgetting. Psychological Bulletin, 140, 1383–1409.
Noreen, S., & MacLeod, M. D. (2015). What do we really know about cognitive inhibition? Task demands and inhibitory effects across a range of memory and behavioral tasks. PLoS ONE, 10, 1–21.
Pastötter, B., & Bäuml, K. H. (2014). Retrieval practice enhances new learning: the forward effect of testing. Frontiers in Psychology, 5. https://doi.org/ 10.3389/fpsyg.2014.00286
Pastötter, B., Schicker, S., Niedernhuber, J., & Bäuml, K. H. (2011). Retrieval during learning facilitates subsequent memory encoding. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(2), 287–297. https://doi.org/10.1037/a0021801
Ribner, A. D., Willoughby, M. T., & Blair, C. B. (2017). Executive function buffers the association between early math and later academic skills. Frontiers in Psychology, 30(8). https://doi.org/10.3389/fpsyg.2017.00869
Roediger, H. L., & Karpicke J. D. (2006). Test-enhanced learning: taking memory tests improves long-term retention. Psychological Sciences, 17, 249–255. https://doi.org/10.1111/j.1467-9280.2006.01693.x
Rowland, C. A. (2014). The effect of testing versus restudy on retention: a meta-analytic review of the testing effect. Psychological Bulletin, 140(6), 1432–1463. https://doi.org/10.1037/a0037559
Rozas, A. X., Juncos-Rabadán, O., & González, M. S. (2008). Processing speed, inhibitory control, and working memory: three important factors to account for age-related cognitive decline. International Journal of Aging and Human Development, 6, 115–130.
Sánchez-Pérez, N., Castillo, A., López-López, J. A. et al. (2017). Computer-based training in math and working memory improves cognitive skills and academic achievement in primary school children: Behavioral results. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.02327
Sylvain-Roy, S., Lungu, O., & Belleville, S. (2015). Normal aging of the attentional control functions that underlie working memory. The journals of gerontology. Series B, Psychological sciences and social sciences, 70, 698–708.
Thanadkit, G., Sudjainark, S., Boonpleng, W., & Kulsaravuth, N. (2021). A comparison of executive functions among early childhood children in Early Childhood Development Centers. Journal of Health Science Research, 15(2), 100–111.
Vrantsidis, D. M., Wakschlag, L. S., Espy, K. A., & Wiebe, S. A. (2022). Differential associations of maternal behavior to preschool boys' and girls' executive function. Journal of Applied Developmental Psychology, 83. https://doi.org/10.1016/j.appdev.2022.101468
Wierenga, L. M., Bos, M. G. N., van Rossenberg, F., & Crone, E. A. (2019). Sex Effects on development of brain structure and executive functions: Greater variance than mean effects. Journal of Cognitive Neuroscience, 31(5), 730–753. https://doi.org/10.1162/jocn_a_01375
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Russian Psychological Journal