Исследования структурных характеристик мозга в психогенетике

Ключевые слова: психогенетика, близнецовый метод, GWAS-анализ, гены-кандидаты, наследуемость, томографические методы, объем мозга, эндофенотип, интеллект, шизофрения

Аннотация

Введение. В статье представлен обзор современных исследований природы индивидуальных различий структурных характеристик мозга. В рамках концепции эндофенотипов (промежуточного звена между геном и комплексным фенотипическим признаком) рассматривается роль индивидуальных различий в структурных характеристиках мозга в формировании индивидуальных различий в психологических признаках. Теоретическое обоснование. В настоящей работе анализируется роль генетических и средовых факторов в формировании индивидуальных различий в структурных характеристиках мозга, измеренных с помощью методов магнитно-резонансной томографии и диффузно-тензорной визуализации. В обзор включены результаты близнецовых исследований, исследований генов-кандидатов, а также полногеномных исследований ассоциаций. Результаты и их обсуждение. В целом генетически информативные исследования структурных характеристик мозга свидетельствуют о том, что для небольшого ряда структур (например, проводящие пути кортикоспинального тракта или объем боковых желудочков) наблюдаются умеренные показатели наследуемости (от 20 до 50 %), тогда как наследуемость большинства структурных характеристик – более 50 %. Показано, что вклад генетических факторов в индивидуальные различия структурных характеристик мозга изменяется в ходе онтогенеза. На основании применения методов многомерного анализа выявлен общий генетический вклад в индивидуальные различия в структурных характеристиках мозга и поведенческих фенотипов. В обзоре представлены результаты новых типов молекулярно-генетических исследований, в первую очередь с применением метода полногеномного анализа ассоциаций, в котором рассматриваются сотни тысяч ДНК-маркеров одновременно. Обсуждаются также исследования таких генетических факторов, как вариация числа копий генов и всегеномные (whole-genome) исследования. В обзоре показано, что в связи с наметившимся в настоящее время переходом к формату многоцентровых консорциумов и связанному с этим росту исследуемых выборок, у современных исследователей открывается новое поле возможностей для изучения вклада генетических факторов в индивидуальные различия в структурных характеристиках мозга.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Илья М. Захаров, Психологический институт Российской академии образования

старший научный сотрудник лаборатории возрастной психогенетики Психологического института РАО

Сергей Б. Малых, Психологический институт Российской академии образования

доктор наук, академик РАО, заведующий лабораторией возрастной психогенетики Психологического института РАО

Литература

Adrián-Ventura, J., Costumero, V., Parcet, M. A., & Ávila, C. (2019). Linking personality and brain anatomy: A structural MRI approach to Reinforcement Sensitivity Theory. Social Cognitive and Affective Neuroscience, 14(3), 329–338. doi: http://dx.doi.org/10.1093/scan/nsz011

Baaré, W. F. C., Hulshoff Pol, H. E., Boomsma, D. I., Posthuma, D., de Geus, E. J. C., Schnack, H. G., … Kahn, R. S. (2001). Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex, 11(9), 816–824. doi: http://dx.doi.org/10.1093/cercor/11.9.816

Bartley, A. J., Jones, D. W., & Weinberger, D. R. (1997). Genetic variability of human brain size and cortical gyral patterns. Brain, 120(2), 257–269. doi: http://dx.doi.org/10.1093/brain/120.2.257

Bartzokis, G., Beckson, M., Lu, P. H., Nuechterlein, K. H., Edwards, N., & Mintz, J. (2001). Age-related changes in frontal and temporal lobe volumes in men. Archives of General Psychiatry, 58(5), 461–465. doi: http://dx.doi.org/10.1001/archpsyc.58.5.461

Basser, P. J., Mattiello, J., & Lebihan, D. (1994). Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance, Series B, 103(3), 247–254. doi: http://dx.doi.org/10.1006/jmrb.1994.1037

Bates, T. C., Luciano, M., Lind, P. A., Wright, M. J., Montgomery, G. W., & Martin, N. G. (2008). Recently-derived variants of brain-size genes ASPM, MCPH1, CDK5RAP and BRCA1 not associated with general cognition, reading or language. Intelligence, 36(6), 689–693. doi: http://dx.doi.org/10.1016/j.intell.2008.04.001

Batouli, S. A. H., Trollor, J. N., Wen, W., & Sachdev, P. S. (2014). The heritability of volumes of brain structures and its relationship to age: A review of twin and family studies. Ageing Research Reviews, 13, 1–9. doi: http://dx.doi.org/10.1016/j.arr.2013.10.003

Blokland, G. A. M., de Zubicaray, G. I., McMahon, K. L., & Wright, M. J. (2012). Genetic and environmental influences on neuroimaging phenotypes: A meta-analytical perspective on twin imaging studies. Twin Research and Human Genetics, 15(3), 351–371. doi: http://dx.doi.org/10.1017/thg.2012.11

Bohlken, M. M., Brouwer, R. M., Mandl, R. C. W., van Haren, N. E. M., Brans, R. G. H., van Baal, G. C. M., ... & Hulshoff Pol, H. E. (2014). Genes contributing to subcortical volumes and intellectual ability implicate the thalamus. Human Brain Mapping, 35(6), 2632–2642. doi: http://dx.doi.org/10.1002/hbm.22356

Brans, R. G. H., Kahn, R. S., Schnack, H. G., van Baal, G. C. M., Posthuma, D., van Haren, N. E. M., ... & Hulshoff Pol, H. E. (2010). Brain plasticity and intellectual ability are influenced by shared genes. Journal of Neuroscience, 30(16), 5519–5524. doi: http://dx.doi.org/10.1523/JNEUROSCI.5841-09.2010

Brans, R. G. H., van Haren, N. E. M., van Baal, G. C. M., Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. (2008). Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Archives of General Psychiatry, 65(11), 1259–1268. doi: http://dx.doi.org/10.1001/archpsyc.65.11.1259

Brouwer, R. M., Hedman, A. M., van Haren, N. E., Schnack, H. G., Brans, R. G. H., Smit, D. J. A., ... & Hulshoff Pol, H. E. (2014). Heritability of brain volume change and its relation to intelligence. NeuroImage, 100, 676–683. doi: http://dx.doi.org/10.1016/j.neuroimage.2014.04.072

Brun, C. C., Leporé, N., Pennec, X., Lee, A. D., Barysheva, M., Madsen, S. K., … Thompson, P. M. (2009). Mapping the regional influence of genetics on brain structure variability – A Tensor-Based Morphometry study. NeuroImage, 48(1), 37–49. doi: http://dx.doi.org/10.1016/j.neuroimage.2009.05.022

Cannon, T. D., Thompson, P. M., van Erp, T. G. M., Huttunen, M., Lonnqvist, J., Kaprio, J., & Toga, A. W. (2006). Mapping heritability and molecular genetic associations with cortical features using probabilistic brain atlases: Methods and applications to schizophrenia. Neuroinformatics, 4, 5–19. doi: http://dx.doi.org/10.1385/ni:4:1:5

Carmelli, D., DeCarli, C., Swan, G. E., Jack, L. M., Reed, T., Wolf, P. A., & Miller, B. L. (1998). Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke, 29(6), 1177–1181. doi: http://dx.doi.org/10.1161/01.str.29.6.1177

Carmelli, D., Swan, G. E., DeCarli, C., & Reed, T. (2002). Quantitative genetic modeling of regional brain volumes and cognitive performance in older male twins. Biological Psychology, 61(1–2), 139–155. doi: http://dx.doi.org/10.1016/s0301-0511(02)00056-x

Chiang, M.-C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., … Thompson, P. M. (2009). Genetics of brain fiber architecture and intellectual performance. Journal of Neuroscience, 29(7), 2212–2224. doi: http://dx.doi.org/10.1523/jneurosci.4184-08.2009

Chiang, M.-C., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Hickie, I., Toga, A. W., … Thompson, P. M. (2011). Genetics of white matter development: A DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage, 54(3), 2308–2317. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.10.015

DeStefano, A. L., Seshadri, S., Beiser, A., Atwood, L. D., Massaro, J. M., Au, R., … DeCarli, C. (2009). Bivariate heritability of total and regional brain volumes: The Framingham Study. Alzheimer Disease & Associated Disorders, 23(3), 218–223. doi: http://dx.doi.org/10.1097/wad.0b013e31819cadd8

Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & Engeland, H. V. (2001). Anatomical MRI of the developing human brain: What have we learned? Journal of the American Academy of Child & Adolescent Psychiatry, 40(9), 1012–1020. doi: http://dx.doi.org/10.1097/00004583-200109000-00009

Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870–878. doi: http://dx.doi.org/10.1006/nimg.2001.1037

Gershon, E. S., Alliey-Rodriguez, N., & Liu, C. (2011). After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. American Journal of Psychiatry, 168(3), 253–256. doi: http://dx.doi.org/10.1176/appi.ajp.2010.10091340

Geschwind, D. H., Miller, B. L., DeCarli, C., & Carmelli, D. (2002). Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proceedings of the National Academy of Sciences, 99(5), 3176–3181. doi: http://dx.doi.org/10.1073/pnas.052494999

Gignac, G. E., & Bates, T. C. (2017). Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence, 64, 18–29. doi: http://dx.doi.org/10.1016/j.intell.2017.06.004

Gilmore, J. H., Schmitt, J. E., Knickmeyer, R. C., Smith, J. K., Lin, W., Styner, M., … Neale, M. C. (2010). Genetic and environmental contributions to neonatal brain structure: A twin study. Human Brain Mapping, 31(8), 1174–1182. doi: http://dx.doi.org/10.1002/hbm.20926

Glahn, D. C., Curran, J. E., Winkler, A. M., Carless, M. A., Kent Jr., J. W., Charlesworth, J. C., … Blangero, J. (2012). High dimensional endophenotype ranking in the search for major depression risk genes. Biological Psychiatry, 71(1), 6–14. doi: http://dx.doi.org/10.1016/j.biopsych.2011.08.022

Gottesman, I. I., & Shields, J. (1972). Schizophrenia and genetics. A Twin Study Vantage Point. New York: Acad. Press.

Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., … Medland, S. E. (2020). The genetic architecture of the human cerebral cortex. Science, 367(6484). doi: http://dx.doi.org/10.1126/science.aay6690

Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 65–73. doi: http://dx.doi.org/10.1016/j.tics.2008.11.003

Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J. C., van Beijsterveldt, C. E. M., … Plomin, R. (2009). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15, 1112–1120. doi: http://dx.doi.org/10.1038/mp.2009.55

Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., ... & Medland, S. E. (2015). Common genetic variants influence human subcortical brain structures. Nature, 520, 224–229. doi: http://dx.doi.org/10.1038/nature14101

Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017). Intelligence is associated with the modular structure of intrinsic brain networks. Scientific Reports, 7, 16088. doi: http://dx.doi.org/10.1038/s41598-017-15795-7

Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8, 473. doi: http://dx.doi.org/10.3389/fnhum.2014.00473

Hoogman, M., Muetzel, R., Guimaraes, J. P., Shumskaya, E., Mennes, M., Zwiers, M. P., … Franke, B. (2019). Brain imaging of the cortex in ADHD: A coordinated analysis of large-scale clinical and population-based samples. American Journal of Psychiatry, 176(7), 531–542. doi: http://dx.doi.org/10.1176/appi.ajp.2019.18091033

Hulshoff Pol, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C. W., Baaré, W. F., van Oel, C., … Kahn, R. S. (2006). Genetic contributions to human brain morphology and intelligence. Journal of Neuroscience, 26(40), 10235–10242. doi: http://dx.doi.org/10.1523/jneurosci.1312-06.2006

Iacono, W. G., Malone, S. M., & Vrieze, S. I. (2017). Endophenotype best practices. International Journal of Psychophysiology, 111, 115–144. doi: http://dx.doi.org/10.1016/j.ijpsycho.2016.07.516

Jahanshad, N., Kohannim, O., Hibar, D. P., Stein, J. L., McMahon, K. L., de Zubicaray, G. I., … Thompson, P. M. (2012). Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proceedings of the National Academy of Sciences, 109(14), E851–E859. doi: http://dx.doi.org/10.1073/pnas.1105543109

Jahanshad, N., Lee, A. D., Barysheva, M., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., ... & Thompson, P. M. (2010). Genetic influences on brain asymmetry: A DTI study of 374 twins and siblings. NeuroImage, 52(2), 455–469. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.04.236

Joshi, A. A., Leporé, N., Joshi, S. H., Lee, A. D., Barysheva, M., Stein, J. L., … Thompson, P. M. (2011). The contribution of genes to cortical thickness and volume. NeuroReport, 22(3), 101–105. doi: http://dx.doi.org/10.1097/wnr.0b013e3283424c84

Joyner, A. H., Roddey, J. C., Bloss, C. S., Bakken, T. E., Rimol, L. M., Melle, I., … Dale, A. M. (2009). A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proceedings of the National Academy of Sciences, 106(36), 15483–15488. doi: http://dx.doi.org/10.1073/pnas.0901866106

Kesslak, J. P., So, V., Choi, J., Cotman, C. W., & Gomez-Pinilla, F. (1998). Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: A mechanism to facilitate encoding and circuit maintenance? Behavioral Neuroscience, 112(4), 1012–1019. doi: http://dx.doi.org/10.1037/0735-7044.112.4.1012

Kochunov, P., Glahn, D. C., Lancaster, J. L., Winkler, A. M., Smith, S., Thompson, P. M., … Blangero, J. (2010). Genetics of microstructure of cerebral white matter using diffusion tensor imaging. NeuroImage, 53(3), 1109–1116. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.01.078

Kohannim, O., Hibar, D. P., Stein, J. L., Jahanshad, N., Hua, X., Rajagopalan, P., … The Alzheimer’s Disease Neuroimaging Initiative (2012). Discovery and replication of gene influences on brain structure using LASSO regression. Frontiers in Neuroscience, 6, 115. doi: http://dx.doi.org/10.3389/fnins.2012.00115

Konrad, A., Vucurevic, G., Musso, F., Stoeter, P., Dahmen, N., & Winterer, G. (2009). ErbB4 genotype predicts left frontotemporal structural connectivity in human brain. Neuropsychopharmacology, 34, 641–650. doi: http://dx.doi.org/10.1038/npp.2008.112

Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., … Giedd, J. N. (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30(1), 163–174. doi: http://dx.doi.org/10.1002/hbm.20494

Llera, A., Wolfers, T., Mulders, P., & Beckmann, C. F. (2019). Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior. eLife, 8. doi: http://dx.doi.org/10.7554/elife.44443

Lu, P. H., Thompson, P. M., Leow, A., Lee, G. J., Lee, A., Yanovsky, I., … Bartzokis, G. (2011). Apolipoprotein E genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: A tensor-based morphometry study. Journal of Alzheimer’s Disease, 23(3), 433–442. doi: http://dx.doi.org/10.3233/jad-2010-101398

Malykh, S. B., Egorova, M. S., & Meshkova, T. A. (2008). Psychogenetics. Saint Petersburg: Piter. (in Russ.).

Malykh, S. B., Kovas, Yu. V., & Gaisina, D. A. (Eds.) (2016). Behavior genomics: Child development and education. Tomsk: Tomsk State University. (in Russ.).

Marstaller, L., Burianová, H., & Reutens, D. C. (2016). Individual differences in structural and functional connectivity predict speed of emotion discrimination. Cortex, 85, 65–74. doi: http://dx.doi.org/10.1016/j.cortex.2016.10.001

McIntosh, A. M., Moorhead, T. W. J., Job, D., Lymer, G. K. S., Maniega, S. M., McKirdy, J., … Hall, J. (2007). The effects of a neuregulin 1 variant on white matter density and integrity. Molecular Psychiatry, 13, 1054–1059. doi: http://dx.doi.org/10.1038/sj.mp.4002103

Medland, S. E., Jahanshad, N., Neale, B. M., & Thompson, P. M. (2014). Whole-genome analyses of whole-brain data: Working within an expanded search space. Nature Neuroscience, 17, 791–800. doi: http://dx.doi.org/10.1038/nn.3718

Meyer-Lindenberg, A., Nicodemus, K. K., Egan, M. F., Callicott, J. H., Mattay, V., & Weinberger, D. R. (2008). False positives in imaging genetics. NeuroImage, 40(2), 655–661. doi: http://dx.doi.org/10.1016/j.neuroimage.2007.11.058

Mufford, M., Cheung, J., Jahanshad, N., van der Merwe, C., Ding, L., Groenewold, N., … Psychiatric Genomics Consortium – Tourette Syndrome working group (2019). Concordance of genetic variation that increases risk for Tourette Syndrome and that influences its underlying neurocircuitry. Translational Psychiatry, 9, 120. doi: http://dx.doi.org/10.1038/s41398-019-0452-3

Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68. doi: http://dx.doi.org/10.1016/j.tics.2004.12.008

Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., … Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908–1911. doi: http://dx.doi.org/10.1126/science.283.5409.1908

Pennington, B. F., Filipek, P. A., Lefly, D., Chhabildas, N., Kennedy, D. N., Simon, J. H., … DeFries, J. C. (2000). A twin MRI study of size variations in the human brain. Journal of Cognitive Neuroscience, 12(1), 223–232. doi: http://dx.doi.org/10.1162/089892900561850

Peper, J. S., Zwiers, M. P., Boomsma, D. I., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Human brain volume: What’s in the genes? In Kim, Y. K. (Ed.), Handbook of Behavior Genetics (pp. 137–157). New York: Springer. doi: http://dx.doi.org/10.1007/978-0-387-76727-7_10

Pfefferbaum, A., Sullivan, E. V., Swan, G. E., & Carmelli, D. (2000). Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiology of Aging, 21(1), 63–74. doi: http://dx.doi.org/10.1016/s0197-4580(00)00086-5

Plomin, R., & Craig, I. (1997). Human behavioural genetics of cognitive abilities and disabilities. BioEssays, 19(12), 1117–1124. doi: http://dx.doi.org/10.1002/bies.950191211

Posthuma, D. (2002). Genetic variation and cognitive ability. Amsterdam: VU.

Posthuma, D., de Geus, E. J. C., Neale, M. C., Hulshoff Pol, H. E., Baaré, W. E. C., Kahn, R. S., & Boomsma, D. (2000). Multivariate genetic analysis of brain structure in an extended twin design. Behavior Genetics, 30, 311–319. doi: http://dx.doi.org/10.1023/A:1026501501434

Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K. M., Williamson, A., & Acker, J. D. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: Replicability of regional differences in volume. Neurobiology of Aging, 25(3), 377–396. doi: http://dx.doi.org/10.1016/s0197-4580(03)00118-0

Reveley, A. M., Reveley, M. A., Chitkara, B., & Clifford, C. (1984). The genetic basis of cerebral ventricular volume. Psychiatry Research, 13(3), 261–266. doi: http://dx.doi.org/10.1016/0165-1781(84)90041-6

Rimol, L. M., Agartz, I., Djurovic, S., Brown, A. A., Roddey, J. C., Kähler, A. K., … Andreassen, O. A. (2010). Sex-dependent association of common variants of microcephaly genes with brain structure. Proceedings of the National Academy of Sciences, 107(1), 384–388. doi: http://dx.doi.org/10.1073/pnas.0908454107

Scamvougeras, A., Kigar, D. L., Jones, D., Weinberger, D. R., & Witelson, S. F. (2003). Size of the human corpus callosum is genetically determined: An MRI study in mono and dizygotic twins. Neuroscience Letters, 338(2), 91–94. doi: http://dx.doi.org/10.1016/s0304394002013332

Schmitt, J. E., Lenroot, R. K., Wallace, G. L., Ordaz, S., Taylor, K. N., Kabani, N., … Giedd, J. N. (2008). Identification of genetically mediated cortical networks: A multivariate study of pediatric twins and siblings. Cerebral Cortex, 18(8), 1737–1747. doi: http://dx.doi.org/10.1093/cercor/bhm211

Schmitt, J. E., Wallace, G. L., Lenroot, R. K., Ordaz, S. E., Greenstein, D., Clasen, L., … Giedd, J. N. (2010). A twin study of intracerebral volumetric relationships. Behavior Genetics, 40, 114–124. doi: http://dx.doi.org/10.1007/s10519-010-9332-6

Strike, L. T., Couvy-Duchesne, B., Hansell, N. K., Cuellar-Partida, G., Medland, S. E., & Wright, M. J. (2015). Genetics and brain morphology. Neuropsychology Review, 25, 63–96. doi: http://dx.doi.org/10.1007/s11065-015-9281-1

Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V.-P., Huttunen, M., … Toga, A. W. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 1253–1258. doi: http://dx.doi.org/10.1038/nn758

Thompson, P. M., Jahanshad, N., Ching, C. R. K., Salminen, L. E., Thomopoulos, S. I., Bright, J., ... & for the ENIGMA Consortium (2020). ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 10, 100. doi: http://dx.doi.org/10.1038/s41398-020-0705-1

Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Review of Neuroscience, 28, 1–23. doi: http://dx.doi.org/10.1146/annurev.neuro.28.061604.135655

van Haren, N. E. M., Hulshoff Pol, H. E., Schnack, H. G., Cahn, W., Brans, R., Carati, I., … Kahn, R. S. (2008). Progressive brain volume loss in schizophrenia over the course of the illness: Evidence of maturational abnormalities in early adulthood. Biological Psychiatry, 63(1), 106–113. doi: http://dx.doi.org/10.1016/j.biopsych.2007.01.004

van Leeuwen, M., van den Berg, S. M., Peper, J. S., Hulshoff Pol, H. E., & Boomsma, D. I. (2009). Genetic covariance structure of reading, intelligence and memory in children. Behavior Genetics, 39, 245–254. doi: http://dx.doi.org/10.1007/s10519-009-9264-1

van Soelen, I. L. C., Brouwer, R. M., Peper, J. S., van Beijsterveldt, T. C. E. M., van Leeuwen, M., de Vries, L. S., … Boomsma, D. I. (2010). Effects of gestational age and birth weight on brain volumes in healthy 9 year-old children. The Journal of Pediatrics, 156(6), 896–901. doi: http://dx.doi.org/10.1016/j.jpeds.2009.12.052

van Soelen, I. L. C., Brouwer, R. M., Peper, J. S., van Leeuwen, M., Koenis, M. M. G., van Beijsterveldt, T. C. E. M., … & Boomsma, D. I. (2012). Brain SCALE: Brain structure and cognition: An adolescent longitudinal twin study into the genetic etiology of individual differences. Twin Research and Human Genetics, 15(3), 453–467. doi: http://dx.doi.org/10.1017/thg.2012.4

Vuoksimaa, E., Panizzon, M. S., Chen, C.-H., Fiecas, M., Eyler, L. T., Fennema-Notestine, C., ... & Kremen, W. S. (2015). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex, 25(8), 2127–2137. doi: http://dx.doi.org/10.1093/cercor/bhu018

Wallace, G. L., Schmitt, J. E., Lenroot, R., Viding, E., Ordaz, S., Rosenthal, M. A., … Giedd, J. N. (2006). A pediatric twin study of brain morphometry. Journal of Child Psychology and Psychiatry, 47(10), 987–993. doi: http://dx.doi.org/10.1111/j.1469-7610.2006.01676.x

Walton, E., Hibar, D., Yilmaz, Z., Jahanshad, N., Cheung, J., Batury, V.-L., … Ehrlich, S. (2019). Exploration of shared genetic architecture between subcortical brain volumes and anorexia nervosa. Molecular Neurobiology, 56, 5146–5156. doi: http://dx.doi.org/10.1007/s12035-018-1439-4

Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., … Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146. doi: http://dx.doi.org/10.1016/j.neuroimage.2009.12.028

Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58–73. doi: http://dx.doi.org/10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.0.co;2-o

Wright, I. C., Sham, P., Murray, R. M., Weinberger, D. R., & Bullmore, E. T. (2002). Genetic contributions to regional variability in human brain structure: Methods and preliminary results. NeuroImage, 17(1), 256–271. doi: http://dx.doi.org/10.1006/nimg.2002.1163

Yoon, U., Fahim, C., Perusse, D., & Evans, A. C. (2010). Lateralized genetic and environmental influences on human brain morphology of 8-year-old twins. NeuroImage, 53(3), 1117–1125. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.01.007

Yoon, U., Perusse, D., Lee, J.-M., & Evans, A. C. (2011). Genetic and environmental influences on structural variability of the brain in pediatric twin: Deformation based morphometry. Neuroscience Letters, 493(1–2), 8–13. doi: http://dx.doi.org/10.1016/j.neulet.2011.01.070

Zavala, C., Beam, C. R., Finch, B. K., Gatz, M., Johnson, W., Kremen, W. S., ... & Reynolds, C. A. (2018). Attained SES as a moderator of adult cognitive performance: Testing gene–environment interaction in various cognitive domains. Developmental Psychology, 54(12), 2356–2370. doi: http://dx.doi.org/10.1037/dev0000576

Zuliani, R., Moorhead, T. W. J., Bastin, M. E., Johnstone, E. C., Lawrie, S. M., Brambilla, P., … McIntosh, A. M. (2011). Genetic variants in the ErbB4 gene are associated with white matter integrity. Psychiatry Research: Neuroimaging, 191(2), 133–137. doi: http://dx.doi.org/10.1016/j.pscychresns.2010.11.001

Опубликован
2020-07-10
Как цитировать
Захаров, И. М., & Малых, С. Б. (2020). Исследования структурных характеристик мозга в психогенетике. Российский психологический журнал, 17(2), 17-35. https://doi.org/10.21702/rpj.2020.2.2
Раздел
Медицинская психология