Аннотация
Введение. Распознавание эмоционального контекста зрительных сцен является на сегодняшний день значимым компонентом успешной социально-психологической адаптации человека к различным условиям реальной и виртуальной жизни. В то же время данных о генетических факторах, ассоциированных с нейробиологическими механизмами пространственно-временных паттернов электрических потенциалов мозга, сопровождающих процесс дифференциации эмоциональной валентности зрительных сцен, на сегодняшний день недостаточно. Ген катехол-О-метилтрансферазы COMT связан с продолжительностью пребывания моноаминов в синаптической щели, а также с длительностью и интенсивностью эмоциональных реакций; генотипы по полиморфному локусу Val158Met (rs4680) ассоциированы с разными особенностями эмоциональной и познавательной сфер их носителей (тревожностью, когнитивным контролем и проч.). Целью нашего исследования явилось изучение характеристик спонтанной электрической активности головного мозга у носителей различных генотипов гена COMT при решении задач на определение эмоциональной валентности зрительных сцен. Методы. Для достижения поставленной цели мы использовали генетический (выделение ДНК из клеток буккального соскоба, генотипирование), электрофизиологический (регистрация ЭЭГ в 128 отведениях), поведенческий (исследование точности распознавания эмоциональной валентности зрительных сцен) и статистический (спектральный, когерентный анализы ЭЭГ; ANOVA; Kruskal-Wallis Test; Dunn's Post Hoc Comparisons для анализа поведенческих данных) методы. Результаты. Анализ данных ЭЭГ, полученных при делении на генотипы, показал наличие связи между генотипами генов COMT и спектральными характеристиками ЭЭГ. Анализ точности оценки эмоциональной валентности зрительных сцен у носителей разных генотипов гена COMT показал наличие ассоциации гена COMT с точностью решения этой задачи. Обсуждение результатов. Полученные результаты дополняют и расширяют имеющиеся данные о связи гена катехол-О-метилтрансферазы с характеристиками спонтанной электрической активности головного мозга, а также с успешностью решения задач на определение эмоциональной валентности зрительных сцен.
Библиографические ссылки
Ahmed, M. Z. I., Sinha, N., Ghaderpour, E., Phadikar, S., & Ghosh, R. (2023). A novel baseline removal paradigm for subject-independent features in emotion classification using EEG. Bioengineering, 10(1), 54.
Alakus, T. B., Gonen, M., & Turkoglu, I. (2020). Database for an emotion recognition system based on EEG signals and various computer games–GAMEEMO. Biomedical Signal Processing and Control, 60, 101951.
Arnsten, A. F., Wang, M., & Paspalas, C. D. (2015). Dopamine’s actions in primate prefrontal cortex: Challenges for treating cognitive disorders. Pharmacological Reviews, 67, 681–696. https://doi.org/10.1124/pr.115.010512
Babenko, V. V., Alekseeva, D. S., Yavna, D. V., Denisova, E. G., Kovsh, E. M., Ermakov, P. N. (2022). Recognition of Facial Expressions Based on Information From the Areas of Highest Increase in Luminance Contrast. International Journal of Cognitive Research in Science, Engineering and Education, 10(3), 37–51. https://doi.org/10.23947/2334-8496-2022-10-3-37-51
Barnett, J. H., Jones, P. B., Robbins, T. W., & Müller, U. (2007). Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Molecular Psychiatry, 12(5), 502. https://doi.org/10.1038/sj.mp.4001973
Barnett, J. H., Scoriels, L., & Munafò, M. R. (2008). Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biological psychiatry, 64(2), 137–144.Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., ... & Weinberger, D. R. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. The American Journal of Human Genetics, 75(5), 807-821.
Damoiseaux, J. S., Viviano, R. P., Yuan, P., & Raz, N. (2016). Differential effect of age on posterior and anterior hippocampal functional connectivity. NeuroImage, 133, 468–476. https://doi.org/10.1016/j. neuroimage.2016.03.047
Dang, L. C., O'Neil, J. P., & Jagust, W. J. (2013). Genetic effects on behavior are mediated by neurotransmitters and large-scale neural networks. NeuroImage, 66, 203–214. https://doi.org/10.1016/j.neuroimage.2012.10.090
Drabant, E. M., Hariri, A. R., Meyer-Lindenberg, A., Munoz, K. E., Mattay, V. S., Kolachana, B. S., ... & Weinberger, D. R. (2006). Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Archives of General Psychiatry, 63(12), 1396–1406. https://doi.org/10.1001/archpsyc.63.12.1396
Ermakov, P. N., Vorobyeva, E. V., Denisova, E. G., Yavna, D. V., Babenko, V. V., Kovsh, E. M., & Alekseeva, D. S. (2022). Recognition of Emotional and Neutral Visual Scenes in Carriers of the MAOA, COMT, DRD4, and 5HT2A Gene Polymorphisms. Psychology in Russia, 15(4), 159. doi: 10.11621/pir.2022.0410
Frantzidis, C. A., Bratsas, C., Papadelis, C. L., Konstantinidis, E., Pappas, C., & Bamidis, P. D. (2010). Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE transactions on Information Technology in Biomedicine, 14(3), 589–597.
Jacobs, E., & D’Esposito, M. (2011). Estrogen shapes dopamine-dependent cognitive processes: Implications for women’s health. Journal of Neuroscience, 31, 5286–5293. https://doi.org/10.1523/JNEUROSCI.6394-10.2011
Katsigiannis, S., & Ramzan, N. (2017). DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE journal of biomedical and health informatics, 22(1), 98–107.
Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., ... & Patras, I. (2011). Deap: A database for emotion analysis; using physiological signals. IEEE transactions on affective computing, 3(1), 18–31.
Lee, T. W., Yu, Y. W., Hong, C. J., Tsai, S. J., Wu, H. C., & Chen, T. J. (2011). The effects of catechol-O-methyl-transferase polymorphism Val158Met on functional connectivity in healthy young females: A resting EEG study. Brain Research, 1377, 21–31. https://doi.org/10.1016/j.brainres.2010.12.073
Liu, B., Song, M., Li, J., Liu, Y., Li, K., Yu, C., & Jiang, T. (2010). Prefrontal-related functional connectivities within the default network are modulated by COMT val158met in healthy young adults. The Journal of Neuroscience, 30, 64–69. https://doi.org/10.1523/JNEUROSCI.3941-09.2010
Liu, J., Wu, G., Luo, Y., Qiu, S., Yang, S., Li, W., & Bi, Y. (2020). EEG-based emotion classification using a deep neural network and sparse autoencoder. Frontiers in Systems Neuroscience, 14, 43.
Lotta, T., Vidgren, J., Tilgmann, C., Ulmanen, I., Melen, K., Julkunen, I., & Taskinen, J. (1995). Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry, 34(13), 4202–4210.
Louis, C. C., Jacobs, E., D'Esposito, M., & Moser, J. (2023). Estradiol and the Catechol-o-methyltransferase Gene Interact to Predict Working Memory Performance: A Replication and Extension. Journal of Cognitive Neuroscience, 35(7), 1144–1153.
Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2010). Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis [Article]. Molecular Psychiatry, 15(9), 918–927. https://doi.org/10.1038/mp.2009.36
Morris, K. A., Grace, S. A., Woods, W., Dean, B., & Rossell, S. L. (2020). The influence of COMT rs4680 on functional connectivity in healthy adults: A systematic review. European Journal of Neuroscience, 52(8), 3851–3878. https://doi.org/10.1111/ejn.14748
Park, C. Y., Cha, N., Kang, S., Kim, A., Khandoker, A. H., Hadjileontiadis, L., ... & Lee, U. (2020). K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. Scientific Data, 7(1), 293. https://doi.org/10.5281/zenodo.3762962
Prins, N., Kingdom, F. A. (2018). Applying the model-comparison approach to test specific research hypotheses in psychophysical research using the Palamedes toolbox. Frontiers in psychology, 9, 1250. https://doi.org/10.3389/fpsyg.2018.01250
Schiller, B., Sperl, M. F., Kleinert, T., Nash, K., & Gianotti, L. R. (2023). EEG microstates in social and affective neuroscience. Brain topography, 1–17. https://doi.org/10.1007/s10548-023-00987-4
Seal, A., Reddy, P. P. N., Chaithanya, P., Meghana, A., Jahnavi, K., Krejcar, O., & Hudak, R. (2020). An EEG database and its initial benchmark emotion classification performance. Computational and mathematical methods in medicine, 2020(1), 8303465. https://doi.org/10.1155/2020/8303465
Subramanian, R., Wache, J., Abadi, M. K., Vieriu, R. L., Winkler, S., & Sebe, N. (2016). ASCERTAIN: Emotion and personality recognition using commercial sensors. IEEE Transactions on Affective Computing, 9(2), 147–160. https://doi.org/10.1109/TAFFC.2016.2625250
Tunbridge, E. M., Harrison, P. J., & Weinberger, D. R. (2006). Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60, 141–151. https://doi.org/10.1016/j.biopsych.2005.10.024
Tunbridge, E. M., Narajos, M., Harrison, C. H., Beresford, C., Cipriani, A., & Harrison, P. J. (2019). Which dopamine polymorphisms are functional? Systematic review and meta-analysis of COMT, DAT, DBH, DDC, DRD1–5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biological Psychiatry, 86(8), 608–620.
Wacker, J., & Gatt, J. M. (2010). Resting posterior versus frontal delta/theta EEG activity is associated with extraversion and the COMT VAL158MET polymorphism. Neuroscience Letters, 478(2), 88–92. https://doi.org/10.1016/j.neulet.2010.04.071
Wang, H., Zhang, B., Zeng, B., Tang, Y., Zhang, T., Zhao, S., … Goff, D. C. (2018). Association between catechol-O-methyltransferase genetic variation and functional connectivity in patients with first-episode schizophrenia. Schizophrenia Research, 199, 214–220. https://doi.org/10.1016/j.schres.2018.04.023
Wang, X.-H., Li, L., Xu, T., & Ding, Z. (2015). Investigating the temporal patterns within and between intrinsic connectivity networks under eyes-open and eyes-closed resting states: A dynamical functional connectivity study based on phase synchronization. PLoS ONE, 10, e0140300. https://doi.org/10.1371/journal.pone.0140300
Weinberger, D. R., & Scarabino, T. (2006). Prefrontal-Hippocampal Coupling During Memory Processing Is Modulated by COMT Val158Met Genotype [Article]. Biological Psychiatry, 60(11), 1250–1258. https://doi.org/10.1016/j.biopsych.2006.03.078
Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010, June). Sun database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on computer vision and pattern recognition (pp. 3485–3492). IEEE.
Zareyan, S., Zhang, H., Wang, J., Song, W., Hampson, E., Abbott, D., & Diamond, A. (2021). First demonstration of double dissociation between COMT-Met158 and COMT-Val158 cognitive performance when stressed and when calmer. Cerebral Cortex, 31(3), 1411-1426. https://doi.org/10.1093/cercor/bhaa276
Алфимова, М. В., & Голимбет, В. Е. (2011). Гены и нейрофизиологические показатели когнитивных процессов: обзор исследований. Журнал высшей нервной деятельности им. И. П. Павлова, 61(4), 389–401.
Лапин, И. А., & Алфимова, М. В. (2014). ЭЭГ-маркеры депрессивных состояний. Социальная и клиническая психиатрия, 24(4), 81–89.
Никишена, И. С., Кропотов, Ю. Д., Пономарев, В. А., Гринь-Яценко, В. А., Яковенко, Е. А., & Белякова, Е. Н. (2004). Динамика спектров мощности и когерентности ЭЭГ в ходе курса бета1-тренинга у детей с нарушениями внимания. Сибирский научный медицинский журнал, (3), 74–80.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Copyright (c) 2024 Российский психологический журнал