Альфа- и тета- ритмы как маркеры когнитивного усилия

Версии

PDF (Английский)
PDF

Ключевые слова

ментальное усилие
мотивационная интенсивность
мозговые осцилляции
электроэнцефалография
магнитоэнцефалография
альфа-ритм
тета-ритм
сложные задачи
мотивация
когнитивные способности

Аннотация

Введение. Данная обзорная статья объединяет теорию мотивационной интенсивности и теории ментального усилия с исследованиями осцилляторных коррелятов выполнения сложных когнитивных задач. Феномен усилия является давним предметом исследований в области фундаментальной психологии. Теории, описывающие когнитивные механизмы ментального усилия, получили развитие в последние годы. Однако дальнейшие исследования необходимы для объяснения механизма модуляции усилия при выполнении задач. Теоретическое обоснование. Ментальное усилие можно определить как активный волевой процесс мобилизации ресурсов для поддержания определенного поведения. Теория мотивационной интенсивности в совокупности с теориями ментального усилия описывают когнитивные и мотивационные факторы модуляции усилия, вкладываемого в выполнение задачи. Интерпретация осцилляторных коррелятов отдельных когнитивных процессов в контексте теорий усилия может позволить развить понимание механизма, лежащего в основе распределения и модуляции ментального усилия. Цель данной статьи заключается в обзоре существующих экспериментальных данных о модуляции связанных с задачей осцилляций и сравнении результатов исследований с предсказаниями теорий усилия. Результаты. В статье обозреваются исследования мощностей осцилляций как коррелятов различных контролируемых процессов, требуемых когнитивной задачей. Выраженность связанных с выполнением задачи осцилляторных эффектов увеличивается при усложнении задачи и при повышенной мотивации к выполнению. При выполнении особо сложных задач наблюдаются индивидуальные различия в показателях активности мозга, которые, по всей видимости, могут объясняться только через мотивационно-эмоциональную реакцию испытуемого на сложность. Обсуждение результатов. Обнаруженные в результате обзора литературы эффекты согласуются с предсказаниями теории мотивационной интенсивности о модуляции усилия. Однако на сегодняшний день наблюдается недостаток исследований, позволяющих соотнести осцилляторные данные с теориями усилия и развить понимание механизма модуляции усилия при различных требованиях задачи. В статье обсуждаются возможные исследования по данной теме и особенности необходимых экспериментальных дизайнов.

https://doi.org/10.21702/rpj.2022.2.15
PDF (Английский)
PDF

Библиографические ссылки

Belousova, L. V., Razumnikova, O. M., & Wolf, N. V. (2015). Age features of the connection between intelligence and EEG characteristics. Journal of Higher Nervous Activity. IP Pavlova, 65(6), 699-699.

Goryushko, S. M., & Samochadin, A. V. (2018). Means for assessing the level of cognitive load in the learning process. Computer Tools in Education, (4), 35-44.

Stankova, E. P., & Myshkin, I. Yu. (2016). About the relationship of individual characteristics of the electroencephalogram with the level of intelligence. Bulletin of Moscow University. Series 16. Biology, (4), 83-88.

Kharauzov, A. K., Vasiliev, P. P., Sokolov, A. V., Fokin, V. A., & Shelepin, Yu. E. (2018). Analysis of images of functional magnetic resonance imaging of the human brain in problems of texture recognition. Optic magazine, 85(8), 22-28.

Atkinson, JW (1957). Motivational determinants of risk-taking behavior. Psychological review, 64(6p1), 359.

Bastiaansen, MC, Böcker, KB, Cluitmans, PJ, & Brunia, CH (1999). Event-related desynchronization related to the anticipation of a stimulus providing knowledge of results. Clinical Neurophysiology, 110 (2), 250-260.

Bastiaansen, MC, & Brunia, CH (2001). Anticipatory attention: an event-related desynchronization approach. International Journal of Psychophysiology, 43 (1), 91-107.

Bekhtereva, NP, Starchenko, MG, Klyucharev, VA, Vorob'ev, VA, Pakhomov, SV, & Medvedev, SV (2000). Study of the brain organization of creativity: II. Positron-emission tomography data. Human Physiology, 26(5), 516-522.

Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current biology, 22 (20), 1969-1974.

Botvinick, MM, & Cohen, JD (2014). The computational and neural basis of cognitive control: charted territory and new frontiers. Cognitive science, 38 (6), 1249-1285.

Brehm, JW, & Self, E.A. (1989). The intensity of motivation. Annual review of psychology, 40 (1), 109-131.

Buzsáki, G., Anastassiou, C.A., & Koch, C. (2012). The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nature reviews neuroscience, 13 (6), 407-420.

Cohen, M.X., & Donner, T.H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of neurophysiology, 110 (12), 2752-2763.

Cohen, M.X., & Van Gaal, S. (2013). Dynamic interactions between large-scale brain networks predict behavioral adaptation after perceptual errors. Cerebral Cortex, 23 (5), 1061-1072.

Doppelmayr, M., Klimesch, W., Hödlmoser, K., Sauseng, P., & Gruber, W. (2005). Intelligence related upper alpha desynchronization in a semantic memory task. Brain Research Bulletin, 66 (2), 171-177.

Doppelmayr, M., Klimesch, W., Schwaiger, J., Auinger, P., & Winkler, T. (1998). Theta synchronization in the human EEG and episodic retrieval. Neuroscience letters, 257 (1), 41-44.

Dreisbach, G., & Fischer, R. (2015). Conflicts as aversive signals for control adaptation. Current Directions in Psychological Science, 24 (4), 255-260.

Earle, F., Hockey, B., Earle, K., & Clough, P. (2015). Separating the effects of task load and task motivation on the effort–fatigue relationship. Motivation and Emotion, 39 (4), 467-476.

Eisenberger, R. (1992). Learned industry. Psychological review, 99(2), 248.

Ermakov, P.N., & Vorobyeva, E.V. (2011). Achievement motivation and EEG spectral power. Psychology in Russia: State of the art, 4, 448-464.

Eubanks, L., Wright, R. A., & Williams, B. J. (2002). Reward influence on the heart: Cardiovascular response as a function of incentive value at five levels of task demand. Motivation and Emotion, 26 (2), 139-152.

Fairclough, S., Ewing, K., Burns, C., & Kreplin, U. (2019). Neural efficiency and mental workload: locating the red line. In Neuroergonomics (pp. 73-77). Academic Press.

Fairclough, S.H., & Ewing, K. (2017). The effect of task demand and incentive on neurophysiological and cardiovascular markers of effort. International Journal of Psychophysiology, 119, 58-66.

Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic perspectives, 19(4), 25-42.

Gendolla, G.H., & Richter, M. (2006). Ego-involvement and the difficulty law of motivation: Effects on performance-related cardiovascular response. Personality and Social Psychology Bulletin, 32 (9), 1188-1203.

Gevins, A., Smith, M.E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral cortex (New York, NY: 1991), 7 (4), 374-385.

Gevins, A., Smith, M.E., Leong, H., McEvoy, L., Whitfield, S., Du, R., & Rush, G. (1998). Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Human Factors, 40 (1), 79-91.

Glazer, JE, Kelley, NJ, Pornpattananangkul, N., Mittal, V.A., & Nusslock, R. (2018). Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology, 132, 184-202.

Grabner, RH, Neubauer, AC, & Stern, E. (2006). Superior performance and neural efficiency: The impact of intelligence and expertise. Brain research bulletin, 69 (4), 422-439.

Gruber, MJ, Watrous, AJ, Ekstrom, AD, Ranganath, C., & Otten, LJ (2013). Expected reward modulates encoding-related theta activity before an event. Neuroimage, 64, 68-74.

Gundel, A., & Wilson, G.F. (1992). Topographical changes in the ongoing EEG related to the difficulty of mental tasks. Braintopography, 5 (1), 17-25.

Heinrichs-Graham, E., & Wilson, TW (2015). Spatiotemporal oscillatory dynamics during the encoding and maintenance phases of a visual working memory task. Cortex, 69, 121-130.

Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory.

Inzlicht, M., Shenhav, A., & Olivola, C.Y. (2018). The effort paradox: Effort is both costly and valued. Trends in cognitive sciences, 22 (4), 337-349.

Jausovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28 (3), 213-237.

Jausovec, N. (1996). Differences in EEG alpha activity related to giftedness. Intelligence, 23 (3), 159-173.

Jausovec, N., & Jausovec, K. (2005). Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence. International Journal of Psychophysiology, 56 (3), 223-235.

Kahneman, D. (1973). Attention and effort (Vol. 1063, pp. 218-226). Englewood Cliffs, NJ: Prentice Hall.

Kane, MJ, & Engle, RW (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic bulletin & review, 9 (4), 637-671.

Karatygin, NA, Korobeinikova, II, Venerin, AA, & Alexandrov, YI (2022). Spectral Characteristics of the EEG Theta-Band and Efficiency of Cognitive Test “N-Back” Performing. Experimental Psychology (Russia), 15(2), 95-110.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 29 (2-3), 169-195.

Klimesch, W., Doppelmayr, M., Pachinger, T., & Russegger, H. (1997). Event-related desynchronization in the alpha band and the processing of semantic information. Cognitive Brain Research, 6 (2), 83-94.

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). Induced alpha band power changes in the human EEG and attention. Neuroscience letters, 244 (2), 73-76.

Klimesch, W., Schack, B., & Sauseng, P. (2005). The functional significance of theta and upper alpha oscillations. Experimental psychology, 52 (2), 99-108.

Knyazev, GG, & Slobodskoy-Plusnin, JY (2009). Substance use underlying behavior: investigation of theta and high frequency oscillations in emotionally relevant situations. Clinical EEG and neuroscience, 40(1), 1-4.

Kool, W., McGuire, J.T., Rosen, Z.B., & Botvinick, M.M. (2010). Decision making and the avoidance of cognitive demand. Journal of experimental psychology: general, 139 (4), 665.

Koshkin, R., Shtyrov, Y., Myachykov, A., & Ossadtchi, A. (2018). Testing the efforts model of simultaneous interpreting: An ERP study. PloS one, 13(10), e0206129.

Larson, GE, Haier, RJ, LaCasse, L., & Hazen, K. (1995). Evaluation of a “mental effort” hypothesis for correlations between cortical metabolism and intelligence. Intelligence, 21 (3), 267-278.

Luria, A. R. (1980). Higher cortical functions in man (2nd ed.). New York: basic.

Mikhailova, ES, Kurgansky, AV, Nushtaeva, RA, Gerasimenko, NY, & Kushnir, AB (2021, September). Intracortical Directed Connectivity for Information Retention in Visual–Spatial Working Memory. In Doklady Biological Sciences (Vol. 500, No. 1, pp. 133-137). Pleiades Publishing.

Missonnier, P., Deiber, MP, Gold, G., Millet, P., Gex -Fabry Pun, M., Fazio-Costa, L.,... & Ibáñez, V. (2006). Frontal theta event-related synchronization: comparison of directed attention and working memory load effects. Journal of neural transmission, 113 (10), 1477-1486.

Muraven, M., Tice, DM, & Baumeister, RF (1998). Self-control as a limited resource: regulatory depletion patterns. Journal of personality and social psychology, 74 (3), 774.

Musslick, S., Dey, B., Özcimder, K., Patwary, MMA, Willke, TL, & Cohen, JD (2016, August). Controlled vs. Automatic Processing: A Graph-Theoretic Approach to the Analysis of Serial vs. Parallel Processing in Neural Network Architectures. In CogSci.

Neubauer, AC, & Fink, A. (2009). Intelligence and neural efficiency: Measures of brain activation versus measures of functional connectivity in the brain. Intelligence, 37 (2), 223-229.

Neubauer, A., Freudenthaler, HH, & Pfurtscheller, G. (1995). Intelligence and spatiotemporal patterns of event-related desynchronization (ERD). Intelligence, 20 (3), 249-266.

Nidal, K., & Malik, AS (Eds.). (2014). EEG/ERP analysis: methods and applications. crc press.

Obrist, P. A. (2012). Cardiovascular psychophysiology: A perspective. Springer Science & Business Media.

Osaka, M. (1984). Peak alpha frequency of EEG during a mental task: Task difficulty and hemispheric differences. Psychophysiology, 21 (1), 101-105.

Pavlov, YG, & Kotchoubey, B. (2017). EEG correlates of working memory performance in females. BMC neuroscience, 18 (1), 1-14.

Pavlov, YG, & Kotchoubey, B. (2021). Temporally distinct oscillatory codes of retention and manipulation of verbal working memory. European Journal of Neuroscience, 54 (7), 6497-6511.

Pavlova, AA, Butorina, AV, Nikolaeva, AY, Prokofyev, AO, Ulanov, MA, Bondarev, DP, & Stroganova, TA (2019). Effortful verb retrieval from semantic memory drives beta suppression in mesial frontal regions involved in action initiation. Human brain mapping, 40(12), 3669-3681.

Pavlova, AA, Butorina, AV, Nikolaeva, AY, Prokofyev, AO, Ulanov, MA, & Stroganova, TA (2017). Not all reading is alike: task modulation of magnetic evoked response to visual word. Psychology in Russia, 10(3), 190.

Perfetti, B., Saggino, A., Ferretti, A., Caulo, M., Romani, G.L., & Onofrj, M. (2009). Differential patterns of cortical activation as a function of fluid reasoning complexity. Human brain mapping, 30 (2), 497-510.

Pessiglione, M., Vinckier, F., Bouret, S., Daunizeau, J., & Le Bouc, R. (2018). Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain, 141 (3), 629-650.

Pfurtscheller, G. (1977). Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalography and clinical neurophysiology, 43 (5), 757-760.

Phukhachee, T., Maneewongvatana, S., Angsuwatanakul, T., Iramina, K., & Kaewkamnerdpong, B. (2019). Investigating the effect of intrinsic motivation on alpha desynchronization using sample entropy. Entropy, 21 (3), 237.

Pornpattananangkul, N., & Nusslock, R. (2016). Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards. Neuropsychologia, 91, 141-162.

Power, JD, & Petersen, SE (2013). Control-related systems in the human brain. Current opinion in neurobiology, 23 (2), 223-228.

Preusse, F., Van Der Meer, E., Deshpande, G., Krueger, F., & Wartenburger, I. (2011). Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning. Frontiers in human neuroscience, 5, 22.

Proskovec, A.L., Heinrichs-Graham, E., & Wilson, T.W. (2019). Load modulates the alpha and beta oscillatory dynamics serving verbal working memory. NeuroImage, 184, 256-265.

Richter, M., & Gendolla, G.H. (2009). The heart contracts to reward: Monetary incentives and preejection period. Psychophysiology, 46 (3), 451-457.

Richter, M., Gendolla, G. H., & Wright, R. A. (2016). Three decades of research on motivational intensity theory: What we have learned about effort and what we still don't know. In Advances in motivation science (Vol. 3, pp. 149-186). Elsevier.

Richter, M., Friedrich, A., & Gendolla, G.H. (2008). Task difficulty effects on cardiac activity. Psychophysiology, 45 (5), 869-875.

Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34 (7), 1015-1022.

Scheeringa, R., Petersson, KM, Oostenveld, R., Norris, DG, Hagoort, P., & Bastiaansen, MC (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage, 44 (3), 1224-1238.

Shackman, AJ, Salomons, TV, Slagter, HA, Fox, AS, Winter, JJ, & Davidson, RJ (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12 (3), 154-167.

Shelepin, YE, Fokin, VA, Harauzov, AK, Pronin, SV, & Chikhman, VN (2009, December). Location of the decision-making center during image shape perception. In Doklady Biological Sciences (Vol. 429, No. 1, p. 511). Springer Nature B.V.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, TL, Cohen, JD, & Botvinick, MM (2017). Toward a rational and mechanistic account of mental effort. Annual review of neuroscience, 40, 99-124.

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79 (2), 217-240.

Shenhav, A., Cohen, J.D., & Botvinick, M.M. (2016). Dorsal anterior cingulate cortex and the value of control. Nature neuroscience, 19 (10), 1286-1291.

Siegel, M., Donner, T.H., & Engel, A.K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13 (2), 121-134.

Silvestrini, N. (2017). Psychological and neural mechanisms associated with effort-related cardiovascular reactivity and cognitive control: An integrative approach. International Journal of Psychophysiology, 119, 11-18.

Silvestrini, N., & Gendolla, G.H. (2019). Affect and cognitive control: Insights from research on effort mobilization. International Journal of Psychophysiology, 143, 116-125.

Smith, TW, Baldwin, M., & Christensen, AJ (1990). Interpersonal influence as active coping: Effects of task difficulty on cardiovascular reactivity. Psychophysiology, 27 (4), 429-437.

Sternberg, S. (1966). High-speed scanning in human memory. science, 153 (3736), 652-654.

Stipacek, A., Grabner, RH, Neuper, C., Fink, A., & Neubauer, AC (2003). Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neuroscience letters, 353 (3), 193-196.

van den Berg, B., Krebs, R.M., Lorist, M.M., & Woldorff, M.G. (2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive, Affective, & Behavioral Neuroscience, 14 (2), 561-577.

Vogt, F., Klimesch, W., & Doppelmayr, M. (1998). High-frequency components in the alpha band and memory performance. Journal of Clinical Neurophysiology, 15 (2), 167-172.

Wianda, E., & Ross, B. (2019). The roles of alpha oscillation in working memory retention. Brain and behavior, 9 (4), e01263.

Wright, R.A. (1996). Brehm's theory of motivation as a model of effort and cardiovascular response.

Wright, R.A., Killebrew, K., & Pimpalapure, D. (2002). Cardiovascular incentive effects where a challenge is unfixed: Demonstrations involving social evaluation, evaluator status, and monetary reward. Psychophysiology, 39 (2), 188-197.

Wright, R.A., Shaw, LL, & Jones, C.R. (1990). Task demand and cardiovascular response magnitude: Further evidence of the mediating role of success importance. Journal of Personality and Social Psychology, 59 (6), 1250.

Yordanova, J., Kolev, V., & Polich, J. (2001). P300 and alpha event-related desynchronization (ERD). Psychophysiology, 38 (1), 143-152.

Zakrzewska, MZ, & Brzezicka, A. (2014). Working memory capacity as a moderator of load-related frontal midline theta variability in Sternberg task. Frontiers in human neuroscience, 8, 399.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Copyright (c) 2022 Жожикашвили Н. А., Бакумова А. Д.