Аннотация
Взаимоотношения собаки и человека как предиктор возникновения поведенческих нарушений. В настоящее время особую актуальность приобретает вопрос проблемного поведения собак-компаньонов. Важнейшей причиной недостаточной адаптации и социализации собак в обществе, неэффективной дрессировки, снижения качества жизни животных является отсутствие научно обоснованной концепции выявления причин поведенческих нарушений и их устранения. Отмечается необходимость изучения ранней социализации, формирования типа привязанности собаки и владельца как предиктора возможного тревожного или агрессивного поведения
Цель исследования. Изучение поведенческих расстройств у домашних собак-компаньонов. В статье приводится анализ 132 современных исследований, посвященных различным аспектам проблемного поведения.
Возникновение и влияние поведенческих нарушений у собак. Существует корреляция агрессивного и тревожного поведения собак с типом привязанности и способом коммуникации с владельцем. Нейротизм владельца и избегающий тип привязанности – одни из ключевых факторов формирования поведенческих признаков тревожности у собаки. Для животных с тревожными расстройствами показано уменьшение продолжительности жизни, рост частоты агрессивных проявлений, нарушение коммуникации с владельцем, что в итоге приводит к снижению качества жизни в диаде «владелец-собака».
Выявление поведенческих проблем у собак. Биохимические методы диагностики нарушений поведения основаны на анализе концентрации серотонина, кортизола, окситоцина и дофамина в биологических жидкостях и шерсти собаки. Физиологические методы диагностики нарушений поведения базируются на оценке показателей ЭКГ и термометрии. Также применяется анкетирование владельцев собак и инструментальные и поведенческие тестовые пробы.
Библиографические ссылки
Al, E., Iliopoulos, F., Forschack, N., Nierhaus, T., Grund, M., Motyka, P., Gaebler, M., Nikulin, V. V., & Villringer, A. (2020). Heart-brain interactions shape somatosensory perception and evoked potentials. Proceedings of the National Academy of Sciences of the United States of America, 117(19), 10575–10584. https://doi.org/10.1073/pnas.1915629117
Amaya, V., Paterson, M. B. A., Descovich, K., & Phillips, C. J. C. (2020). Effects of olfactory and auditory enrichment on heart rate variability in shelter dogs. Animals, 10(8), 1385. https://doi.org/10.3390/ani10081385
Badino, P., Odore, R., Osella, M. C., Bergamasco, L., Francone, P., Girardi, C., & Re, G. (2004). Modifications of serotonergic and adrenergic receptor concentrations in the brain of aggressive Canis familiaris. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 139(3), 343–350. https://doi.org/10.1016/j.cbpb.2004.09.019
Bentosela, M., Wynne, C. D., D'Orazio, M., Elgier, A., & Udell, M. A. (2016). Sociability and gazing toward humans in dogs and wolves: Simple behaviors with broad implications. Journal of the Experimental Analysis of Behavior, 105(1), 68–75. https://doi.org/10.1002/jeab.191
Bergamasco, L., Osella, M. C., Odore, R., et al. (2010). Heart rate variability and saliva cortisol assessment in shelter dog: Human–animal interaction effects. Applied Animal Behaviour Science, 125(1-2), 56–68. https://doi.org/10.1016/j.applanim.2010.03.002
Bivona, G., Gambino, C. M., Iacolino, G., & Ciaccio, M. (2019). Vitamin D and the nervous system. Neurological Research, 41(9), 827–835. https://doi.org/10.1080/01616412.2019.1622872
Bleuer-Elsner, S., Zamansky, A., Fux, A., Kaplun, D., Romanov, S., Sinitca, A., Masson, S., & van der Linden, D. (2019). Computational analysis of movement patterns of dogs with ADHD-like behavior. Animals, 9(12), 1140. https://doi.org/10.3390/ani9121140
Bowen, J., García, E., Darder, P., Argüelles, J., & Fatjó, J. (2020). The effects of the Spanish COVID-19 lockdown on people, their pets, and the human-animal bond. Journal of Veterinary Behavior, 40, 75–91. https://doi.org/10.1016/j.jveb.2020.05.013
Bowman, A., Scottish S. P. C. A., Dowell, F. J., & Evans, N. P. (2017). The effect of different genres of music on the stress levels of kennelled dogs. Physiology & Behavior, 171, 207–215. https://doi.org/10.1016/j.physbeh.2017.01.024
Boyd, C., Jarvis, S., McGreevy, P., et al. (2018). Mortality resulting from undesirable behaviours in dogs aged under three years attending primary-care veterinary practices in England. Animal Welfare, 27(3), 251–262. https://doi.org/10.7120/09627286.27.3.251
Bunford, N., Andics, A., Kis, A., Miklósi, Á., & Gácsi, M. (2017). Canis familiaris as a model for non-invasive comparative neuroscience. Trends in Neurosciences, 40(7), 438–452. https://doi.org/10.1016/j.tins.2017.05.003
Bunford, N., Csibra, B., Peták, C., Ferdinandy, B., Miklósi, Á., & Gácsi, M. (2019). Associations among behavioral inhibition and owner-rated attention, hyperactivity/impulsivity, and personality in the domestic dog (Canis familiaris). Journal of Comparative Psychology, 133(2), 233–243. https://doi.org/10.1037/com0000151
Canejo-Teixeira, R., Neto, I., Baptista, L. V., & Niza, M. M. R. E. (2019). Identification of dysfunctional human-dog dyads through dog ownership histories. Open Veterinary Journal, 9(2), 140–146. https://doi.org/10.4314/ovj.v9i2.8
Chen, Q., Xu, Y., Christiaen, E., Wu, G. R., De Witte, S., Vanhove, C., Saunders, J., Peremans, K., & Baeken, C. (2023). Structural connectome alterations in anxious dogs: A DTI-based study. Scientific Reports, 13(1), 9946. https://doi.org/10.1038/s41598-023-37121-0
Corsetti, S., Borruso, S., Malandrucco, L., Spallucci, V., Maragliano, L., Perino, R., D'Agostino, P., & Natoli, E. (2021). Cannabis sativa L. may reduce aggressive behaviour towards humans in shelter dogs. Scientific Reports, 11(1), 24029. https://doi.org/10.1038/s41598-021-03543-x
Craig, L., Meyers-Manor, J., College, R., Anders, K., & Sütterlin, S. (2017). The relationship between heart rate variability and canine aggression. Applied Animal Behaviour Science, 188, 59–67. https://doi.org/10.1016/j.applanim.2016.12.015
Cuevas, K., & Bell, M. A. (2011). EEG and ECG from 5 to 10 months of age: Developmental changes in baseline activation and cognitive processing during a working memory task. International Journal of Psychophysiology, 80(2), 119–128. https://doi.org/10.1016/j.ijpsycho.2011.02.009
Dalley, J. W., & Roiser, J. P. (2012). Dopamine, serotonin and impulsivity. Neuroscience, 215, 42–58. https://doi.org/10.1016/j.neuroscience.2012.03.065
DeNapoli, J. S., Dodman, N. H., Shuster, L., Rand, W. M., & Gross, K. L. (2000). Effect of dietary protein content and tryptophan supplementation on dominance aggression, territorial aggression, and hyperactivity in dogs. Journal of the American Veterinary Medical Association, 217(4), 504–508. https://doi.org/10.2460/javma.2000.217.504
Dinwoodie, R., Dwyer, B., Zottol, V., Gleason, D., & Dodman, N. H. (2019). Demographics and comorbidity of behavior problems in dogs. Journal of Veterinary Behavior, 32, 62–71. https://doi.org/10.1016/j.jveb.2019.04.007
Dodman, N. H., Brown, D. C., & Serpell, J. A. (2018). Associations between owner personality and psychological status and the prevalence of canine behavior problems. PLoS One, 13(2), e0192846. https://doi.org/10.1371/journal.pone.0192846
Dreschel, N. A. (2010). The effects of fear and anxiety on health and lifespan in pet dogs. Applied Animal Behaviour Science, 125(3–4), 157–162. https://doi.org/10.1016/j.applanim.2010.04.003
Duschek, S., Muckenthaler, M., Werner, N., & del Paso, G. A. (2009). Relationships between features of autonomic cardiovascular control and cognitive performance. Biological Psychology, 81(2), 110–117. https://doi.org/10.1016/j.biopsycho.2009.03.003
Fan, X., Zhao, C., Zhang, X., Luo, H., & Zhang, W. (2020). Assessment of mental workload based on multi-physiological signals. Technology and Health Care, 28(S1), 67–80. https://doi.org/10.3233/THC-209008
Faragó, T., Andics, A., Devecseri, V., Kis, A., Gácsi, M., & Miklósi, A. (2014). Humans rely on the same rules to assess emotional valence and intensity in conspecific and dog vocalizations. Biological Letters, 10(1), 20130926. https://doi.org/10.1098/rsbl.2013.0926
Fernández, G., Krapacher, F., Ferreras, S., Quassollo, G., Mari, M. M., Pisano, M. V., Montemerlo, A., Rubianes, M. D., Bregonzio, C., Arias, C., & Paglini, M. G. (2021). Lack of Cdk5 activity is involved in dopamine transporter expression and function: Evidence from an animal model of attention-deficit hyperactivity disorder. Experimental Neurology, 346, 113866. https://doi.org/10.1016/j.expneurol.2021.113866
Foraita, M., Howell, T., & Bennett, P. (2021). Environmental influences on development of executive functions in dogs. Animal Cognition, 24(4), 655–675. https://doi.org/10.1007/s10071-021-01489-1
Forte, G., De Pascalis, V., Favieri, F., & Casagrande, M. (2019). Effects of blood pressure on cognitive performance: A systematic review. Journal of Clinical Medicine, 9(1), 34. https://doi.org/10.3390/jcm9010034
Frank, M. G., & Heller, H. C. (2003). The ontogeny of mammalian sleep: A reappraisal of alternative hypotheses. Journal of Sleep Research, 12(1), 25–34. https://doi.org/10.1046/j.1365-2869.2003.00339.x
Fux, A., Zamansky, A., Bleuer-Elsner, S., van der Linden, D., Sinitca, A., Romanov, S., & Kaplun, D. (2021). Objective video-based assessment of ADHD-like canine behavior using machine learning. Animals (Basel, Switzerland), 11(10), 2806. https://doi.org/10.3390/ani11102806
Gácsi, M., Maros, K., Sernkvist, S., Faragó, T., & Miklósi, A. (2013). Human analogue safe haven effect of the owner: Behavioural and heart rate response to stressful social stimuli in dogs. PLOS ONE, 8(3), e58475. https://doi.org/10.1371/journal.pone.0058475
Gáll, Z., & Székely, O. (2021). Role of vitamin D in cognitive dysfunction: New molecular concepts and discrepancies between animal and human findings. Nutrients, 13(11), 3672. https://doi.org/10.3390/nu13113672
García-Belenguer, S., Grasa, L., Valero, O., Palacio, J., Luño, I., & Rosado, B. (2021). Gut microbiota in canine idiopathic epilepsy: Effects of disease and treatment. Animals (Basel, Switzerland), 11(11), 3121. https://doi.org/10.3390/ani11113121
Genro, J. P., Kieling, C., Rohde, L. A., & Hutz, M. H. (2010). Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Review of Neurotherapeutics, 10(4), 587–601. https://doi.org/10.1586/ern.10.17
Gianaros, P. J., & Wager, T. D. (2015). Brain-body pathways linking psychological stress and physical health. Current Directions in Psychological Science, 24(4), 313–321. https://doi.org/10.1177/0963721415581476
Gobbo, E., & Zupan Šemrov, M. (2021). Neuroendocrine and cardiovascular activation during aggressive reactivity in dogs. Frontiers in Veterinary Science, 8, 683858. https://doi.org/10.3389/fvets.2021.683858
Gobbo, E., & Zupan, M. (2020). Dogs' sociability, owners' neuroticism, and attachment style to pets as predictors of dog aggression. Animals (Basel, Switzerland), 10(2), 315. https://doi.org/10.3390/ani10020315
Grajfoner, D., Ke, G. N., & Wong, R. M. M. (2021). The effect of pets on human mental health and wellbeing during COVID-19 lockdown in Malaysia. Animals (Basel, Switzerland), 11(9), 2689. https://doi.org/10.3390/ani11092689
Hakanen, E., Mikkola, S., Salonen, M., Puurunen, J., Sulkama, S., Araujo, C., & Lohi, H. (2020). Active and social life is associated with lower non-social fearfulness in pet dogs. Scientific Reports, 10(1), 13774. https://doi.org/10.1038/s41598-020-70722-7
Hall, C. A., & Chilcott, R. P. (2018). Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics (Basel, Switzerland), 8(1), 19. https://doi.org/10.3390/diagnostics8010019
Hamrakova, A., Ondrejka, I., Sekaninova, N., et al. (2020). Central autonomic regulation assessed by pupillary light reflex is impaired in children with attention deficit hyperactivity disorder. Physiological Research, 69(3), S513–S521. https://doi.org/10.33549/physiolres.934589
Hejjas, K., Vas, J., Topal, J., Szantai, E., Ronai, Z., Szekely, A., Kubinyi, E., Horvath, Z., Sasvari-Szekely, M., & Miklosi, A. (2007). Association of polymorphisms in the dopamine D4 receptor gene and the activity-impulsivity endophenotype in dogs. Animal Genetics, 38(6), 629–633. https://doi.org/10.1111/j.1365-2052.2007.01657.x
Helsly, M., Priymenko, N., Girault, C., Duranton, C., & Gaunet, F. (2022). Dog behaviours in veterinary consultations: Part II. The relationship between the behaviours of dogs and their owners. Veterinary Journal, 281, 105789. https://doi.org/10.1016/j.tvjl.2022.105789
Hernádi, A., Kis, A., Kanizsár, O., Tóth, K., Miklósi, B., & Topál, J. (2015). Intranasally administered oxytocin affects how dogs (Canis familiaris) react to the threatening approach of their owner and an unfamiliar experimenter. Behavioural Processes, 119, 1–5. https://doi.org/10.1016/j.beproc.2015.07.001
Hjortskov, N., Rissén, D., Blangsted, A. K., Fallentin, N., Lundberg, U., & Søgaard, K. (2004). The effect of mental stress on heart rate variability and blood pressure during computer work. European Journal of Applied Physiology, 92(1-2), 84–89. https://doi.org/10.1007/s00421-004-1055-z
Hydbring-Sandberg, E., von Walter, L. W., Höglund, K., Svartberg, K., Swenson, L., & Forkman, B. (2004). Physiological reactions to fear provocation in dogs. Journal of Endocrinology, 180(3), 439–448. https://doi.org/10.1677/joe.0.1800439
Jégh-Czinege, N., Faragó, T., & Pongrácz, P. (2020). A bark of its own kind: The acoustics of ‘annoying’ dog barks suggests a specific attention-evoking effect for humans. Bioacoustics, 29(2), 210–225. https://doi.org/10.1080/09524622.2019.1576147
Junttila, S., Huohvanainen, S., & Tiira, K. (2021). Effect of sex and reproductive status on inhibitory control and social cognition in the domestic dog (Canis familiaris). Animals, 11(8), 2448. https://doi.org/10.3390/ani11082448
Kikusui, T., Nagasawa, M., Nomoto, K., Kuse-Arata, S., & Mogi, K. (2019). Endocrine regulations in human-dog coexistence through domestication. Trends in Endocrinology & Metabolism, 30(11), 793–806. https://doi.org/10.1016/j.tem.2019.09.002
Kim, D., Yadav, D., & Song, M. (2024). An updated review on animal models to study attention-deficit hyperactivity disorder. Translational Psychiatry, 14(1), 187. https://doi.org/10.1038/s41398-024-02893-0
Kim, Y., Sa, J., Chung, Y., Park, D., & Lee, S. (2018). Resource-efficient pet dog sound events classification using LSTM-FCN based on time-series data. Sensors, 18(11), 4019. https://doi.org/10.3390/s18114019
Kimura, Y., Totani, S., Kameshima, S., & Itoh, N. (2023). Perception biases for problematic behaviors in dogs due to owners' attributes. Journal of Veterinary Medical Science, 85(7), 763–771. https://doi.org/10.1292/jvms.23-0022
Kirchoff, N. S., Udell, M. A. R., & Sharpton, T. J. (2019). The gut microbiome correlates with conspecific aggression in a small population of rescued dogs (Canis familiaris). PeerJ, 7, e6103. https://doi.org/10.7717/peerj.6103
Kis, A., Ciobica, A., & Topál, J. (2017). The effect of oxytocin on human-directed social behaviour in dogs (Canis familiaris). Hormones and Behavior, 94, 40–52. https://doi.org/10.1016/j.yhbeh.2017.06.001
Konok, V., Kosztolányi, A., Rainer, W., Mutschler, B., Halsband, U., & Miklósi, Á. (2015). Influence of owners' attachment style and personality on their dogs' (Canis familiaris) separation-related disorder. PLOS ONE, 10(2), e0118375. https://doi.org/10.1371/journal.pone.0118375
Kubinyi, E., Bel Rhali, S., Sándor, S., Szabó, A., & Felföldi, T. (2020). Gut microbiome composition is associated with age and memory performance in pet dogs. Animals, 10(9), 1488. https://doi.org/10.3390/ani10091488
Lee, W. S., & Yoon, B. E. (2023). Necessity of an Integrative Animal Model for a Comprehensive Study of Attention-Deficit/Hyperactivity Disorder. Biomedicines, 11(5), 1260. https://doi.org/10.3390/biomedicines11051260
León, B. M. R., García-Belenguer, S., Chacón, G., Villegas, A., & Palacio, J. (2012). Assessment of serotonin in serum, plasma, and platelets of aggressive dogs. Journal of Veterinary Behavior, 7(6), 348–352. https://doi.org/10.1016/j.jveb.2012.01.005
Lit, L., Schweitzer, J. B., Iosif, A. M., & Oberbauer, A. M. (2010). Owner reports of attention, activity, and impulsivity in dogs: A replication study. Behavioral and Brain Functions, 6(1), 1. https://doi.org/10.1186/1744-9081-6-1
Lopes Fagundes, A. L., Hewison, L., McPeake, K. J., Zulch, H., & Mills, D. S. (2018). Noise sensitivities in dogs: An exploration of signs in dogs with and without musculoskeletal pain using qualitative content analysis. Frontiers in Veterinary Science, 5, 17. https://doi.org/10.3389/fvets.2018.00017
Luque-Casado, A., Perales, J. C., Cárdenas, D., & Sanabria, D. (2016). Heart rate variability and cognitive processing: The autonomic response to task demands. Biological Psychology, 113, 83–90. https://doi.org/10.1016/j.biopsycho.2015.11.013
MacLean, E. L., Gesquiere, L. R., Gee, N. R., Levy, K., Martin, W. L., & Carter, C. S. (2017). Effects of affiliative human-animal interaction on dog salivary and plasma oxytocin and vasopressin. Frontiers in Psychology, 8, 1606. https://doi.org/10.3389/fpsyg.2017.01606
MacLean, E. L., Gesquiere, L. R., Gruen, M. E., Sherman, B. L., Martin, W. L., & Carter, C. S. (2017). Endogenous oxytocin, vasopressin, and aggression in domestic dogs. Frontiers in Psychology, 8, 1613. https://doi.org/10.3389/fpsyg.2017.01613
MacNeil, S., Deschênes, S. S., Caldwell, W., Brouillard, M., Dang-Vu, T. T., & Gouin, J. P. (2017). High-frequency heart rate variability reactivity and trait worry interact to predict the development of sleep disturbances in response to a naturalistic stressor. Annals of Behavioral Medicine, 51(6), 912–924. https://doi.org/10.1007/s12160-017-9915-z
Magula, L., Moxley, K., & Lachman, A. (2019). Iron deficiency in South African children and adolescents with attention deficit hyperactivity disorder. Journal of Child & Adolescent Mental Health, 31(2), 85–92. https://doi.org/10.2989/17280583.2019.1637345
Maros, K., Dóka, A., & Miklósi, Á. (2008). Behavioural correlation of heart rate changes in family dogs. Applied Animal Behaviour Science, 109(2–4), 329–341. https://doi.org/10.1006/j.applanim.2007.03.005
Marshall-Pescini, S., Schaebs, F. S., Gaugg, A., Meinert, A., Deschner, T., & Range, F. (2019). The role of oxytocin in the dog-owner relationship. Animals, 9(10), 792. https://doi.org/10.3390/ani9100792
Masson, S., & Gaultier, E. (2018). Retrospective study on hypersensitivity-hyperactivity syndrome in dogs: Long-term outcome of high-dose fluoxetine treatment and proposal of a clinical score. Dog Behavior, 4, 15–35. https://doi.org/10.4454/db.v4i2.79
Mikkola, S., Salonen, M., Puurunen, J., Hakanen, E., Sulkama, S., Araujo, C., & Lohi, H. (2021). Aggressive behaviour is affected by demographic, environmental, and behavioural factors in purebred dogs. Scientific Reports, 11(1), 9433. https://doi.org/10.1038/s41598-021-88793-5
Miklósi, Á., Kubinyi, E., Topál, J., Gácsi, M., Virányi, Z., & Csányi, V. (2003). A simple reason for a big difference: Wolves do not look back at humans, but dogs do. Current Biology, 13(9), 763–766. https://doi.org/10.1016/s0960-9822(03)00263-x
Miller, S. L., Serpell, J. A., & Dalton, K. R., et al. (2022). The importance of evaluating positive welfare characteristics and temperament in working therapy dogs. Frontiers in Veterinary Science, 9, 844252. https://doi.org/10.3389/fvets.2022.844252
Mills, D. S., Demontigny-Bédard, I., Gruen, M., Klinck, M. P., McPeake, K. J., Barcelos, A. M., Hewison, L., Van Haevermaet, H., Denenberg, S., Hauser, H., Koch, C., Ballantyne, K., Wilson, C., Mathkari, C. V., Pounder, J., Garcia, E., Darder, P., Fatjó, J., & Levine, E. (2020). Pain and problem behavior in cats and dogs. Animals, 10(2), 318. https://doi.org/10.3390/ani10020318
Mogavero, F., Jager, A., & Glennon, J. C. (2018). Clock genes, ADHD, and aggression. Neuroscience & Biobehavioral Reviews, 91, 51–68. https://doi.org/10.1016/j.neubiorev.2016.11.002
Mongillo, P., Scandurra, A., Eatherington, C. J., D’Aniello, B., & Marinelli, L. (2019). Development of a spatial discount task to measure impulsive choices in dogs. Animals, 9(7), 469. https://doi.org/10.3390/ani9070469
Mulcahy, J. S., Larsson, D. E. O., Garfinkel, S. N., & Critchley, H. D. (2019). Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. NeuroImage, 202, 116072. https://doi.org/10.1016/j.neuroimage.2019.116072
Müller, C. A., Riemer, S., Virányi, Z., Huber, L., & Range, F. (2016). Inhibitory control, but not prolonged object-related experience appears to affect physical problem-solving performance of pet dogs. PLOS ONE, 11(2), e0147753. https://doi.org/10.1371/journal.pone.0147753
Muñana, K. R., Jacob, M. E., & Callahan, B. J. (2020). Evaluation of fecal Lactobacillus populations in dogs with idiopathic epilepsy: A pilot study. Animal Microbiome, 2(1), 19. https://doi.org/10.1186/s42523-020-00036-6
Nagasawa, M., Mitsui, S., En, S., Ohtani, N., Ohta, M., Sakuma, Y., Onaka, T., Mogi, K., & Kikusui, T. (2015). Social evolution. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science, 348(6232), 333–336. https://doi.org/10.1126/science.1261022
Nagendra, H., Kumar, V., & Mukherjee, S. (2015). Cognitive behavior evaluation based on physiological parameters among young healthy subjects with yoga as intervention. Computational and Mathematical Methods in Medicine, 821061. https://doi.org/10.1155/2015/821061
Oades, R. D. (2008). Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Progress in Brain Research, 172, 543–565. https://doi.org/10.1016/S0079-6123(08)00926-6
Oades, R. D., Sadile, A. G., Sagvolden, T., Viggiano, D., Zuddas, A., Devoto, P., Aase, H., Johansen, E. B., Ruocco, L. A., & Russell, V. A. (2005). The control of responsiveness in ADHD by catecholamines: Evidence for dopaminergic, noradrenergic, and interactive roles. Developmental Science, 8(2), 122–131. https://doi.org/10.1111/j.1467-7687.2005.00399.x
O'Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism, and the brain-gut-microbiome axis. Behavioral Brain Research, 277, 32–48. https://doi.org/10.1016/j.bbr.2014.07.027
Palestrini, C. E., Previde, P., & Verga, M. (2005). Heart rate and behavioral responses of dogs in Ainsworth's strange situation: A pilot study. Applied Animal Behaviour Science, 94(1–2), 75–88. https://doi.org/10.1016/j.applanim.2005.02.005
Parente, G., Gargano, T., Di Mitri, M., et al. (2021). Consequences of COVID-19 lockdown on children and their pets: Dangerous increase of dog bites among the pediatric population. Children, 8(8), 620. https://doi.org/10.3390/children8080620
Park, S., Won, M. J., Lee, E. C., Mun, S., Park, M. C., & Whang, M. (2015). Evaluation of 3D cognitive fatigue using heart-brain synchronization. International Journal of Psychophysiology, 97(2), 120–130. https://doi.org/10.1016/j.ijpsycho.2015.04.006
Pongrácz, P. (2017). Modeling evolutionary changes in information transfer: Effects of domestication on the vocal communication of dogs (Canis familiaris). European Psychologist, 22, 219–232. https://doi.org/10.1027/1016-9040/a000300
Powell, L., Duffy, D. L., Kruger, K. A., Watson, B., & Serpell, J. A. (2021). Relinquishing owners underestimate their dog's behavioral problems: Deception or lack of knowledge? Frontiers in Veterinary Science, 8, 734973. https://doi.org/10.3389/fvets.2021.734973
Powell, L., Stefanovski, D., Siracusa, C., & Serpell, J. (2021). Owner personality, owner-dog attachment, and canine demographics influence treatment outcomes in canine behavioral medicine cases. Frontiers in Veterinary Science, 7, 630931. https://doi.org/10.3389/fvets.2020.630931
Puurunen, J., Hakanen, E., Salonen, M. K., Mikkola, S., Sulkama, S., Araujo, C., & Lohi, H. (2020). Inadequate socialization, inactivity, and urban living environment are associated with social fearfulness in pet dogs. Scientific Reports, 10(1), 3527. https://doi.org/10.1038/s41598-020-60546-w
Puurunen, J., Sulkama, S., Tiira, K., Araujo, C., Lehtonen, M., Hanhineva, K., & Lohi, H. (2016). A non-targeted metabolite profiling pilot study suggests that tryptophan and lipid metabolisms are linked with ADHD-like behaviors in dogs. Behavioral Brain Functions, 12(1), 27. https://doi.org/10.1186/s12993-016-0112-1
Re, S., Zanoletti, M., & Emanuele, E. (2008). Aggressive dogs are characterized by low omega-3 polyunsaturated fatty acid status. Veterinary Research Communications, 32(3), 225–230. https://doi.org/10.1007/s11259-007-9021-y
Riemer, S., Mills, D. S., & Wright, H. (2013). Impulsive for life? The nature of long-term impulsivity in domestic dogs. Animal Cognition, 17(3), 815–819. https://doi.org/10.1007/s10071-013-0701-4
Riemer, S., Müller, C., Range, F., & Huber, L. (2013). Dogs (Canis familiaris) can learn to attend to connectivity in string pulling tasks. Journal of Comparative Psychology, 128(1), 31–39. https://doi.org/10.1037/a0033202
Riggio, G., Gazzano, A., Zsilák, B., Carlone, B., & Mariti, C. (2020). Quantitative behavioral analysis and qualitative classification of attachment styles in domestic dogs: Are dogs with a secure and an insecure-avoidant attachment different? Animals (Basel), 11(1), 14. https://doi.org/10.3390/ani11010014
Romero, T., Nagasawa, M., Mogi, K., Hasegawa, T., & Kikusui, T. (2014). Oxytocin promotes social bonding in dogs. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9085–9090. https://doi.org/10.1073/pnas.1322868111
Roth, L. S., Faresjö, Å., Theodorsson, E., & Jensen, P. (2016). Hair cortisol varies with season and lifestyle and relates to human interactions in German shepherd dogs. Scientific Reports, 6, 19631. https://doi.org/10.1038/srep19631
Russell, V. A. (2007). Neurobiology of animal models of attention-deficit hyperactivity disorder. Journal of Neuroscience Methods, 161(2), 185–198. https://doi.org/10.1016/j.jneumeth.2006.12.005
Salonen, M., Mikkola, S., Hakanen, E., Sulkama, S., Puurunen, J., & Lohi, H. (2022). Personality traits associate with behavioral problems in pet dogs. Translational Psychiatry, 12(1), 78. https://doi.org/10.1038/s41398-022-01841-0
Salonen, M., Mikkola, S., Hakanen, E., Sulkama, S., Puurunen, J., & Lohi, H. (2021). Reliability and validity of a dog personality and unwanted behavior survey. Animals (Basel), 11(5), 1234. https://doi.org/10.3390/ani11051234
Salonen, M., Sulkama, S., Mikkola, S., Puurunen, J., Hakanen, E., Tiira, K., Araujo, C., & Lohi, H. (2020). Prevalence, comorbidity, and breed differences in canine anxiety in 13,700 Finnish pet dogs. Scientific Reports, 10(1), 2962. https://doi.org/10.1038/s41598-020-59837-z
Schöberl, I., Beetz, A., Solomon, J., Wedl, M., Gee, N., & Kotrschal, K. (2016). Social factors influencing cortisol modulation in dogs during a strange situation procedure. Journal of Veterinary Behavior, 11, 77–85. https://doi.org/10.1016/j.jveb.2015.09.007
Segurson, S. A., Serpell, J. A., & Hart, B. L. (2005). Evaluation of a behavioral assessment questionnaire for use in the characterization of behavioral problems of dogs relinquished to animal shelters. Journal of the American Veterinary Medical Association, 227(11), 1755–1761. https://doi.org/10.2460/javma.2005.227.1755
Shirvani-Rad, S., Ejtahed, H. S., Ettehad Marvasti, F., Taghavi, M., Sharifi, F., Arzaghi, S. M., & Larijani, B. (2022). The role of gut microbiota-brain axis in pathophysiology of ADHD: A systematic review. Journal of Attention Disorders, 10870547211073474. https://doi.org/10.1177/10870547211073474
Siniscalchi, M., McFarlane, J. R., Kauter, K. G., Quaranta, A., & Rogers, L. J. (2013). Cortisol levels in hair reflect behavioral reactivity of dogs to acoustic stimuli. Research in Veterinary Science, 94(1), 49–54. https://doi.org/10.1016/j.rvsc.2012.02.017
Sjoberg, E. A., Ramos, S., López-Tolsa, G. E., Johansen, E. B., & Pellón, R. (2021). The irrelevancy of the inter-trial interval in delay-discounting experiments on an animal model of ADHD. Behavioral Brain Research, 408, 113236. https://doi.org/10.1016/j.bbr.2021.113236
Solhjoo, M., Swarup, S., & Makaryus, A. N. (2019). A case of aortic dissection presenting with atypical symptoms and diagnosed with transthoracic echocardiography. Case Reports in Radiology, 6545472. https://doi.org/10.1155/2019/6545472
Solomon, J., Beetz, A., Schöberl, I., Gee, N., & Kotrschal, K. (2019). Attachment security in companion dogs: Adaptation of Ainsworth's strange situation and classification procedures to dogs and their human caregivers. Attachment & Human Development, 21(4), 389–417. https://doi.org/10.1080/14616734.2018.1517812
Sonntag, Q., & Overall, K. L. (2014). Key determinants of dog and cat welfare: Behaviour, breeding, and household lifestyle. Revista Científica y Técnica de la Oficina Internacional de Epizootias, 33(1), 213–220. https://doi.org/10.20506/rst.33.1.2270
Sontag, T. A., Tucha, O., Walitza, S., & Lange, K. W. (2010). Animal models of attention deficit/hyperactivity disorder (ADHD): A critical review. Attention Deficit and Hyperactivity Disorders, 2(1), 1–20. https://doi.org/10.1007/s12402-010-0019-x
Sonuga-Barke, E. J. (2003). The dual pathway model of ADHD: An elaboration of neuro-developmental characteristics. Neuroscience & Biobehavioral Reviews, 27(7), 593–604. https://doi.org/10.1016/j.neubiorev.2003.08.005
Spangler, D. P., & McGinley, J. J. (2020). Vagal flexibility mediates the association between resting vagal activity and cognitive performance stability across varying socioemotional demands. Frontiers in Psychology, 11, 2093. https://doi.org/10.3389/fpsyg.2020.02093
Sukmajaya, A. C., Lusida, M. I., Soetjipto, & Setiawati, Y. (2021). Systematic review of gut microbiota and attention-deficit hyperactivity disorder (ADHD). Annals of General Psychiatry, 20(1), 12. https://doi.org/10.1186/s12991-021-00330-w
Sulkama, S., Puurunen, J., Salonen, M., Mikkola, S., Hakanen, E., Araujo, C., & Lohi, H. (2021). Canine hyperactivity, impulsivity, and inattention share similar demographic risk factors and behavioural comorbidities with human ADHD. Translational Psychiatry, 11(1), 501. https://doi.org/10.1038/s41398-021-01626-x
Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141–153. https://doi.org/10.1007/s12160-009-9101-z
Thielke, L. E., & Udell, M. A. (2017). The role of oxytocin in relationships between dogs and humans and potential applications for the treatment of separation anxiety in dogs. Biological Reviews of the Cambridge Philosophical Society, 92(1), 378–388. https://doi.org/10.1111/brv.12235
Tiira, K., & Lohi, H. (2014). Reliability and validity of a questionnaire survey in canine anxiety research. Applied Animal Behaviour Science, 155, 82–92. https://doi.org/10.1016/j.applanim.2014.03.007
Tiira, K., Sulkama, S., & Lohi, H. (2016). Prevalence, comorbidity, and behavioral variation in canine anxiety. Journal of Veterinary Behavior, 16, 36–44. https://doi.org/10.1016/j.jveb.2016.06.008
Tonacci, A., Billeci, L., Burrai, E., Sansone, F., & Conte, R. (2019). Comparative evaluation of the autonomic response to cognitive and sensory stimulations through wearable sensors. Sensors (Basel), 19(21), 4661. https://doi.org/10.3390/s19214661
Topál, J., Gergely, G., Erdohegyi, A., Csibra, G., & Miklósi, A. (2009). Differential sensitivity to human communication in dogs, wolves, and human infants. Science, 325(5945), 1269–1272. https://doi.org/10.1126/science.1176960
Turner, K. M., Young, J. W., McGrath, J. J., Eyles, D. W., & Burne, T. H. (2012). Cognitive performance and response inhibition in developmentally vitamin D (DVD)-deficient rats. Behavioral Brain Research, 242, 47–53. https://doi.org/10.1016/j.bbr.2012.12.029
Van der Kooij, M. A., & Glennon, J. C. (2007). Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neuroscience & Biobehavioral Reviews, 31(4), 597–618. https://doi.org/10.1016/j.neubiorev.2006.12.002
Vas, J., Topál, J., Péch, E., & Miklósi, A. (2007). Measuring attention deficit and activity in dogs: A new application and validation of a human ADHD questionnaire. Applied Animal Behaviour Science, 103, 105–117. https://doi.org/10.1016/j.applanim.2006.03.017
Wan, L., Ge, W. R., Zhang, S., Sun, Y. L., Wang, B., & Yang, G. (2020). Case-control study of the effects of gut microbiota composition on neurotransmitter metabolic pathways in children with attention deficit hyperactivity disorder. Frontiers in Neuroscience, 14, 127. https://doi.org/10.3389/fnins.2020.00127
Wan, M., Hejjas, K., Ronai, Z., Elek, Z., Sasvari-Szekely, M., Champagne, F. A., Miklósi, A., & Kubinyi, E. (2013). DRD4 and TH gene polymorphisms are associated with activity, impulsivity, and inattention in Siberian Husky dogs. Animal Genetics, 44(6), 717–727. https://doi.org/10.1111/age.12058
Weafer, J., & de Wit, H. (2014). Sex differences in impulsive action and impulsive choice. Addictive Behaviors, 39(11), 1573–1579. https://doi.org/10.1016/j.addbeh.2013.10.033
Wickramasuriya, D. S., & Faghih, R. T. (2019). A novel filter for tracking real-world cognitive stress using multi-time-scale point process observations. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 599–602. https://doi.org/10.1109/EMBC.2019.8857917
Winstanley, C. A., Eagle, D. M., & Robbins, T. W. (2006). Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clinical Psychology Review, 26(4), 379–395. https://doi.org/10.1016/j.cpr.2006.01.001
Wirobski, G., Range, F., Schaebs, F. S., Palme, R., Deschner, T., & Marshall-Pescini, S. (2021). Life experience rather than domestication accounts for dogs' increased oxytocin release during social contact with humans. Scientific Reports, 11(1), 14423. https://doi.org/10.1038/s41598-021-93922-1
Wormald, D., Lawrence, A. J., Carter, G., & Fisher, A. D. (2017). Reduced heart rate variability in pet dogs affected by anxiety-related behaviour problems. Physiology & Behavior, 168, 122–127. https://doi.org/10.1016/j.physbeh.2016.11.003
Wright, H. F., Mills, D. S., & Pollux, P. M. (2012). Behavioural and physiological correlates of impulsivity in the domestic dog (Canis familiaris). Physiology & Behavior, 105(3), 676–682. https://doi.org/10.1016/j.physbeh.2011.09.019
Wright, H. F., Mills, D. S., & Pollux, P. M. J. (2011). Development and validation of a psychometric tool for assessing impulsivity in the domestic dog (Canis familiaris). International Journal of Comparative Psychology, 24(2), 210–225. https://doi.org/10.46867/IJCP.2011.24.02.03
Yang, P., Cai, G., Cai, Y., Fei, J., & Liu G. (2013). Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder. Acta Biochim Biophys Sin (Shanghai), 45(7), 578–585. https://doi.org/10.1093/abbs/gmt043
Yu, X., Zhang, J., Xie, D., Wang, J., & Zhang, C. (2008). Relationship between scalp potential and autonomic nervous activity during a mental arithmetic task. Autonomic Neuroscience, 146(1-2), 81–86. https://doi.org/10.1016/j.autneu.2008.12.005
Zhang, J., Yu, X., & Xie, D. (2010). Effects of mental tasks on the cardiorespiratory synchronization. Respiratory Physiology & Neurobiology, 170(1), 91–95. https://doi.org/10.1016/j.resp.2009.11.003
Zhu, J., Fan, F., McCarthy, D. M., Zhang, L., Cannon, E. N., Spencer, T. J., Biederman, J., & Bhide, P. G. (2017). A prenatal nicotine exposure mouse model of methylphenidate responsive ADHD-associated cognitive phenotypes. International Journal of Developmental Neuroscience, 58, 26–34. https://doi.org/10.1016/j.ijdevneu.2017.01.014
Zhu, J., Lee, K. P., Spencer, T. J., Biederman, J., & Bhide, P. G. (2014). Transgenerational transmission of hyperactivity in a mouse model of ADHD. J Neurosci, 34(8), 2768–73. https://doi.org/10.1523/JNEUROSCI.4402-13.2014
Zhu, J., Zhang, X., Xu, Y., Spencer, T. J., Biederman, J., & Bhide, P.G. (2012). Prenatal nicotine exposure mouse model showing hyperactivity, reduced cingulate cortex volume, reduced dopamine turnover, and responsiveness to oral methylphenidate treatment. Journal of Neuroscience, 32(27), 9410–8. https://doi.org/10.1523/JNEUROSCI.1041-12.2012
Zhu, Y.S., Xiong, Y.F., Luo, F.Q., & Min, J. (2019). Dexmedetomidine protects rats from postoperative cognitive dysfunction via regulating the GABAB R-mediated cAMP-PKA-CREB signaling pathway. Neuropathology, 39(1), 30–38. https://doi.org/10.1111/neup.12530
Zhvania, M. G., Japaridze, N., Tizabi, Y., Lomidze, N., Pochkhidze, N., & Lordkipanidze, T. (2021). Age-related cognitive decline in rats is sex and context dependent. Neuroscience Letters, 765, 136262. https://doi.org/10.1016/j.neulet.2021.136262
Zugno, A. I., Matos, M. P., Canever, L., Fraga, D. B., De Luca, R. D., Ghedim, F. V., Deroza, P. F., de Oliveira, M. B., Pacheco, F. D., Valvassori, S. S., Volpato, A. M., Budni, J., & Quevedo, J. (2014). Evaluation of acetylcholinesterase activity and behavioural alterations induced by ketamine in an animal model of schizophrenia. Acta Neuropsychiatrica, 26(1), 43–50. https://doi.org/10.1017/neu.2013.31
Zugno, A. I., Oliveira, M. B., Mastella, G. A., Heylmann, A. S. A., Canever, L., Pacheco, F. D., Damazio, L. S., Citadin, S. A., de Lucca, L. A., Simões, L. R., Malgarin, F., Budni, J., Barichello, T., Schuck, P. F., & Quevedo, J. (2017). Increased risk of developing schizophrenia in animals exposed to cigarette smoke during the gestational period. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 75, 199–206. https://doi.org/10.1016/j.pnpbp.2017.02.010
Zuo, Z., Li, J., Zhang, B., Hang, A., Wang, Q., Xiong, G., Tang, L., Zhou, Z., & Chang, X. (2023). Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice. Toxics, 11(10), 842. https://doi.org/10.3390/toxics11100842
Zurawek, D., Salerno-Kochan, A., Dziedzicka-Wasylewska, M., Nikiforuk, A., Kos, T., & (2018). Popik, P. Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in a ketamine-based animal model of schizophrenia. Schizophrenia Research, 192, 423–430. https://doi.org/10.1016/j.schres.2017.04.014
Zurkovsky, L., Bychkov, E., Tsakem, E. L., Siedlecki, C., Blakely, R. D., & Gurevich, E. V. (2012). Cognitive effects of dopamine depletion in the context of diminished acetylcholine signaling capacity in mice. Disease Models & Mechanisms, 6(1), 171–183. https://doi.org/10.1242/dmm.010363
Zwierzyńska, E., Pietrzak, B. (2024). The impact of brivaracetam on cognitive processes and anxiety in various experimental models. Pharmacological Reports, 76(1), 86–97. https://doi.org/10.1007/s43440-023-00564-3
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Copyright (c) 2024 Российский психологический журнал