Аннотация
Введение. Представленный научный обзор направлен на понимание этиологии пространственных способностей человека. Пространственное мышление – сложный комплекс когнитивных способностей, позволяющих распознавать, преобразовывать и сохранять информацию об объектах, прогнозировать трансформацию взаимодействий между ними под влиянием прочих факторов. Настоящая работа направлена на получение наиболее полного описания пространственных способностей как специфического вида умственной деятельности, лежащего в основе выполнения практических и теоретических задач, решаемых индивидом, с позиции психологии и генетики, чтобы подчеркнуть важность синтеза накопленных экспериментальных данных и психологических основ пространственного интеллекта в общем.
Теоретическое обоснование. Представлен обзор результатов генетически информативных исследований пространственных способностей человека. Так как умение ориентироваться в пространстве является неотъемлемой чертой всех живых организмов, пространственные способности имеют эволюционно-адаптивное значение и также важны для индивида. В когнитивной психологии под пространственными навыками понимаются способности оперировать мысленными пространственными образами, схемами, моделями реальности, причем эти способности существенно различаются между людьми. Анализ этиологии этих индивидуальных различий выявил значительный вклад (69 %) наследственных факторов в формирование пространственных способностей. Результаты близнецовых исследований ставят задачу поиска конкретных полиморфных вариантов в генах, вовлеченных в развитие пространственных навыков. В целом ряде масштабных лонгитюдных исследований показано, что пространственные способности являются надежным предиктором достижений человека в области естественных наук, технологий, инженерии и математики (STEM), поэтому изучение их молекулярно-генетических механизмов представляется важной и актуальной задачей.
Результаты и их обсуждение. В ходе проведения различного рода экспериментальных работ по психогенетике пространственных способностей человека были впервые получены весьма интересные данные, подтверждающие их наследственную природу. Выявлено, что пространственный интеллект является умеренно наследуемым признаком, в развитии которого задействован широкий спектр генетических факторов, обуславливающих активацию различных сигнальных путей метаболизма организма человека.
Библиографические ссылки
Ананьев, Б. Г. и Рыбалко, Е. Ф. (1964). Особенности восприятия пространства у детей. Москва: Просвещение.
Лобанов, А. П., Радчикова, Н. П. и Семенова, Е. М. (2013). Сценарии взаимосвязи академических достижений и интеллектуально-когнитивного развития студентов. Известия Саратовского университета. Новая серия. Серия: Акмеология образования. Психология развития, 2(4), 366–373.
Малых, С. Б., Малых, А. С., Карунас, А. С., Еникеева, Р. Ф., Давыдова, Ю. Д. и Хуснутдинова, Э. К. (2019). Молекулярно-генетические исследования когнитивных способностей. Генетика, 55(7), 741–754. https://doi.org/10.1134/S0016675819070117
Панфилов, А. Н. и Панфилова, В. М. (2015). Пространственное мышление как основа формирования технического интеллекта в подростковом возрасте. Путь науки, 1, 137–139.
Семаго, Н. Я. и Семаго, М. М. (2005). Теория и практика оценки психического развития ребенка. Дошкольный и младший школьный возраст. Санкт-Петербург: Речь.
Якиманская, И. С. (2008). Педагогическая психология (основные проблемы). Москва: Изд-во Московского психолого-социального ин-та; Воронеж: МОДЭК.
Aguirre, G. K., Zarahn, E., & D'Esposito, M. (1998). An area within human ventral cortex sensitive to “building” stimuli: Evidence and implications. Neuron, 21(2), 373–383. https://doi.org/10.1016/s0896-6273(00)80546-2
Ali, Y. O., Allen, H. M., Yu, L., Li-Kroeger, D., Bakhshizadehmahmoudi, D., Hatcher, A., … Lu, H.-C. (2016). NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biology, 14(6), e1002472. https://doi.org/10.1371/journal.pbio.1002472
Ali, Y. O., Bradley, G., & Lu, H.-C. (2017). Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Scientific Reports, 7, 43846. https://doi.org/10.1038/srep43846
Ali, Y. O., Li-Kroeger, D., Bellen, H. J., Zhai, R. G. & Lu, H.-C. (2013). NMNATs, evolutionarily conserved neuronal maintenance factors. Trends in Neurosciences, 36(11), 632–640. https://doi.org/10.1016/j.tins.2013.07.002
Amare, A. T., Schubert, K. O., Klingler-Hoffmann, M., Cohen-Woods, S., & Baune, B. T. (2017). The genetic overlap between mood disorders and cardiometabolic diseases: A systematic review of genome wide and candidate gene studies. Translational Psychiatry, 7, e1007. https://doi.org/10.1038/tp.2016.261
American Psychiatric Association (1999). Diagnostic and statistical manual of mental disorders DSM-IV-TR fourth edition (text revision). Washington, DC.
Andreazza, A. C., Cassini, C., Rosa, A. R., Leite, M. C., de Almeida, L. M. V., Nardin, P., … Gonçalves, C. A. (2007). Serum S100B and antioxidant enzymes in bipolar patients. Journal of Psychiatric Research, 41(6), 523–529. https://doi.org/10.1016/j.jpsychires.2006.07.013
Arias-Vasquez, A., Altink, M. E., Rommelse, N. N., Slaats–Willemse, D. I. E., Buschgens, C. J. M., Fliers, E. A., … Buitelaar, J. K. (2011). CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder. Genes, Brain & Behavior, 10(8), 844–851. https://doi.org/10.1111/j.1601-183X.2011.00724.x
Bahrami, A., Khayyatzadeh, S. S., Jaberi, N., Tayefi, M., Mohammadi, F., Ferns, G. A., … Ghayour-Mobarhan, M. (2019). Common polymorphisms in genes related to vitamin D metabolism affect the response of cognitive abilities to vitamin D supplementation. Journal of Molecular Neuroscience, 69, 150–156. https://doi.org/10.1007/s12031-019-01344-6
Banner, H., Bhat, V., Etchamendy, N., Joober, R., & Bohbot, V. D. (2011). The brain‐derived neurotrophic factor Val66Met polymorphism is associated with reduced functional magnetic resonance imaging activity in the hippocampus and increased use of caudate nucleus‐dependent strategies in a human virtual navigation task. European Journal of Neuroscience, 33(5), 968–977. https://doi.org/10.1111/j.1460-9568.2010.07550.x
Barco, A., & Marie, H. (2011). Genetic approaches to investigate the role of CREB in neuronal plasticity and memory. Molecular Neurobiology, 44, 330–349. https://doi.org/10.1007/s12035-011-8209-x
Barry, D. N., & Commins, S. (2011). Imaging spatial learning in the brain using immediate early genes: Insights, opportunities and limitations. Reviews in the Neurosciences, 22(2), 131–142. https://doi.org/10.1515/RNS.2011.019
Barry, D. N., Coogan, A. N., & Commins, S. (2016). The time course of systems consolidation of spatial memory from recent to remote retention: A comparison of the Immediate Early Genes Zif268, c-Fos and Arc. Neurobiology of Learning and Memory, 128, 46–55. https://doi.org/10.1016/j.nlm.2015.12.010
Bath, K. G., & Lee, F. S. (2006). Variant BDNF (Val66Met) impact on brain structure and function. Cognitive, Affective, & Behavioral Neuroscience, 6, 79–85. https://doi.org/10.3758/cabn.6.1.79
Bearden, C. E., & Freimer, N. B. (2006). Endophenotypes for psychiatric disorders: Ready for primetime? Trends in Genetics, 22(6), 306–313. https://doi.org/10.1016/j.tig.2006.04.004
Bi, X., Yang, L., Li, T., Wang, B., Zhu, H., & Zhang, H. (2017). Genome‐wide mediation analysis of psychiatric and cognitive traits through imaging phenotypes. Human Brain Mapping, 38, 4088–4097. https://doi.org/10.1002/hbm.23650
Biederer, T., Sara, Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E. T., & Südhof, T. C. (2002). SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science, 297(5586), 1525–1531. https://doi.org/10.1126/science.1072356
Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P. (2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience, 27(38), 10078–10083. https://doi.org/10.1523/JNEUROSCI.1763-07.2007
Bueller, J. A., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J.-K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 59(9), 812–815. https://doi.org/10.1016/j.biopsych.2005.09.022
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511571312
Caselli, R. J., Dueck, A. C., Osborne, D., Sabbagh, M. N., Connor, D. J., Ahern, G. L., … Reiman, E. M. (2009). Longitudinal modeling of age-related memory decline and the APOE ε4 effect. New England Journal of Medicine, 361, 255–263. https://doi.org/10.1056/NEJMoa0809437
Centanni, T. M., Booker, A. B., Sloan, A. M., Chen, F., Maher, B. J., Carraway, R. S., … Kilgard, M. P. (2014). Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cerebral Cortex, 24(7), 1753–1766. https://doi.org/10.1093/cercor/bht028
Cera, I., Whitton, L., Donohoe, G., Morris, D. W., Dechant, G., & Apostolova, G. (2019). Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability. PLoS Genetics, 15(2), e1007890. https://doi.org/10.1371/journal.pgen.1007890
Clarke, T. K., Adams, M. J., Davies, G., Howard, D. M., Hall, L. S., Padmanabhan, S., … McIntosh, A. M. (2017). Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N = 112 117). Molecular Psychiatry, 22, 1376–1384. https://doi.org/10.1038/mp.2017.153
Colangelo, N., Assouline, S. G., & Gross, M. U. M. (2004). A nation deceived: How schools hold back America’s brightest students. Iowa City: University of Iowa.
Colom, R., Contreras, M. J., Shih, P. C., & Santacreu, J. (2003). The assessment of spatial ability with a single computerized test. European Journal of Psychological Assessment, 19(2), 92–100. https://doi.org/10.1027//1015-5759.19.2.92
Czajkowski, R., Jayaprakash, B., Wiltgen, B., Rogerson, T., Guzman-Karlsson, M. C., Barth, A. L., … Silva, A. J. (2014). Encoding and storage of spatial information in the retrosplenial cortex. Proceedings of the National Academy of Sciences USA, 111(23), 8661–8666. https://doi.org/10.1073/pnas.1313222111
D'Angelo, I., Raffaelli, N., Dabusti, V., Lorenzi, T., Magni, G., & Rizzi, M. (2000). Structure of nicotinamide mononucleotide adenylyltransferase: A key enzyme in NAD+ biosynthesis. Structure, 8(9), 993–1004. https://doi.org/10.1016/s0969-2126(00)00190-8
Dannlowski, U., Ohrmann, P., Konrad, C., Domschke, K., Bauer, J., Kugel, H., … Suslow, T. (2009). Reduced amygdala–prefrontal coupling in major depression: Association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology, 12(1), 11–22. https://doi.org/10.1017/S1461145708008973
Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., … Deary, I. J. (2015). Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N = 53 949). Molecular Psychiatry, 20, 183–192. https://doi.org/10.1038/mp.2014.188
Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., … Deary, I. J. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9, 2098. https://doi.org/10.1038/s41467-018-04362-x
Davies, G., Marioni, R. E., Liewald, D. C., Hill, W. D., Hagenaars, S. P., Harris, S. E., … Deary, I. J. (2016). Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N = 112 151). Molecular Psychiatry, 21, 758–767. https://doi.org/10.1038/mp.2016.45
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., … Deary, I. J. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 996–1005. https://doi.org/10.1038/mp.2011.85
Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63, 453–482. https://doi.org/10.1146/annurev-psych-120710-100353
Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human intelligence. Human Genetics, 126, 215–232. https://doi.org/10.1007/s00439-009-0655-4
Dilks, D. D., Julian, J. B., Paunov, A. M., & Kanwisher, N. (2013). The occipital place area is causally and selectively involved in scene perception. Journal of Neuroscience, 33(4), 1331–1336. https://doi.org/10.1523/JNEUROSCI.4081-12.2013
Donato, R., Cannon, B. R., Sorci, G., Riuzzi, F., Hsu, K., Weber, D. J., & Geczy, C. L. (2013). Functions of S100 Proteins. Current Molecular Medicine, 13(1), 24–57.
Donato, R., Sorci, G., Riuzzi, F., Arcuri, C., Bianchi, R., Brozzi, F., … Giambanco, I. (2009). S100B's double life: Intracellular regulator and extracellular signal. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1793(6), 1008–1022. https://doi.org/10.1016/j.bbamcr.2008.11.009
Ducci, F., Newman, T. K., Funt, S., Brown, G. L., Virkkunen, M., & Goldman, D. (2006). A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass index. Molecular Psychiatry, 11, 858–866. https://doi.org/10.1038/sj.mp.4001856
Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388–396. https://doi.org/10.1016/j.tics.2008.07.004
Epstein, R. A., & Vass, L. K. (2014). Neural systems for landmark-based wayfinding in humans. Philosophical Transactions of the Royal Society B, 369(1635), 20120533. https://doi.org/10.1098/rstb.2012.0533
Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598–601. https://doi.org/10.1038/33402
Erbel-Sieler, C., Dudley, C., Zhou, Y., Wu, X., Estill, S. J., Han, T., … McKnight, S. L. (2004). Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proceedings of the National Academy of Sciences USA, 101(37), 13648–13653. https://doi.org/10.1073/pnas.0405310101
FitzPatrick, D. R., Carr, I. M., McLaren, L., Jack P. Leek, Patrick Wightman, Kathy Williamson, … David T. Bonthron (2003). Identification of SATB2 as the cleft palate gene on 2q32–q33. Human Molecular Genetics, 12(19), 2491–2501. https://doi.org/10.1093/hmg/ddg248
Forero, A., Ku, H.-P., Malpartida, A. B., Wäldchen, S., Alhama-Riba, J., Kulka, C., … Lesch, K.-P. (2020). Serotonin (5-HT) neuron-specific inactivation of Cadherin-13 impacts 5-HT system formation and cognitive function. Neuropharmacology, 168, 108018. https://doi.org/10.1016/j.neuropharm.2020.108018
Gabel, L. A., Gibson, C. J., Gruen, J. R., & LoTurco, J. J. (2010). Progress towards a cellular neurobiology of reading disability. Neurobiology of Disease, 38(2), 173–180. https://doi.org/10.1016/j.nbd.2009.06.019
Gabel, L. A., Marin, I., LoTurco, J. J., Che, A., Murphy, C., Manglani, M., & Kass, S. (2011). Mutation of the dyslexia-associated gene Dcdc2 impairs LTM and visuo-spatial performance in mice. Genes, Brain and Behavior, 10(8), 868–875. https://doi.org/10.1111/j.1601-183X.2011.00727.x
Gleeson, J. G., Lin, P. T., Flanagan, L. A., & Walsh, C. A. (1999). Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron, 23(2), 257–271. https://doi.org/10.1016/S0896-6273(00)80778-3
Grill-Spector, K. (2003). The neural basis of object perception. Current Opinion in Neurobiology, 13(2), 159–166. https://doi.org/10.1016/S0959-4388(03)00040-0
Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Sciences, 5(12), 525–532. https://doi.org/10.1016/S1364-6613(00)01801-5
Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., & Weinberger, D. R. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23(17), 6690–6694. https://doi.org/10.1523/JNEUROSCI.23-17-06690.2003
Hartley, T., & Burgess, N. (2005). Complementary memory systems: Competition, cooperation and compensation. Trends in Neurosciences, 28(4), 169–170. https://doi.org/10.1016/j.tins.2005.02.004
Hasson, U., Harel, M., Levy, I., & Malach, R. (2003). Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron, 37(6), 1027–1041. https://doi.org/10.1016/S0896-6273(03)00144-2
Hibar, D. P., Westlye, L. T., van Erp, T. G. M., Rasmussen, J., Leonardo, C. D., Faskowitz, J., … Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21, 1710–1716. https://doi.org/10.1038/mp.2015.227
Huang, Y., Song, N.-N., Lan, W., Hu, L., Su, C.‐J., Ding, Y.‐Q., & Zhang, L. (2013). Expression of transcription factor Satb2 in adult mouse brain. Anatomical Record, 296(3), 452–461. https://doi.org/10.1002/ar.22656
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. Journal of Neuroscience, 23(13), 5945–5952.
Ibrahim, O., Sutherland, H. G., Avgan, N., Spriggens, L. K., Lea, R. A., Haupt, L. M., … Griffiths, L. R. (2018). Investigation of the CADM2 polymorphism rs17518584 in memory and executive functions measures in a cohort of young healthy individuals. Neurobiology of Learning and Memory, 155, 330–336. https://doi.org/10.1016/j.nlm.2018.08.001
Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, 78(3–5), 272–303. https://doi.org/10.1016/j.pneurobio.2006.02.006
Jian, X., Sofer, T., Tarraf, W., Bressler, J., Faul, J. D., Zhao, W., … Fornage, M. (2020). Genome-wide association study of cognitive function in diverse Hispanics/Latinos: Results from the Hispanic Community Health Study/Study of Latinos. Translational Psychiatry, 10, 245. https://doi.org/10.1038/s41398-020-00930-2
Kalmbach, B. E., Voicu, H., Ohyama, T., & Mauk, M. D. (2011). A subtraction mechanism of temporal coding in cerebellar cortex. Journal of Neuroscience, 31(6), 2025–2034. https://doi.org/10.1523/JNEUROSCI.4212-10.2011
Kamnasaran, D., Muir, W. J., Ferguson-Smith, M. A., & Cox, D. W. (2003). Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. Journal of Medical Genetics, 40, 325–332. https://doi.org/10.1136/jmg.40.5.325
Kan, K.-J., Wicherts, J. M., Dolan, C. V., & van der Maas, H. L. J. (2013). On the nature and nurture of intelligence and specific cognitive abilities: The more heritable, the more culture dependent. Psychological Science, 24(12), 2420–2428. https://doi.org/10.1177%2F0956797613493292
Khine, M. S. (Ed.) (2017). Visual-spatial ability in STEM education. Transforming research into practice. Springer.
Kim, G. H., Lee, J. H., Seo, S. W., Kim, J. H., Seong, J.-K., Ye, B. S., … Na, D. L. (2015). Hippocampal volume and shape in pure subcortical vascular dementia. Neurobiology of Aging, 36(1), 485–491. https://doi.org/10.1016/j.neurobiolaging.2014.08.009
Klimentidis, Y. C., Raichlen, D. A., Bea, J., Garcia, D. O., Wineinger, N. E., Mandarino, L. J., … Going, S. B. (2018). Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. International Journal of Obesity, 42, 1161–1176. https://doi.org/10.1038/s41366-018-0120-3
Knopik, V. S., Neiderhiser, J. M., De Fries, J. C., & Plomin, R. (2017). Behavioral genetics (7th ed.). New York: Worth Publishers.
Knowles, E. E. M., Carless, M. A., de Almeida, M. A. A., Curran, J. E., McKay, D. R., Sprooten, E., … Glahn, D. C. (2014). Genome-wide significant localization for working and spatial memory: Identifying genes for psychosis using models of cognition. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 165(1), 84–95. https://doi.org/10.1002/ajmg.b.32211
Knowles, K. A., Viar-Paxton, M. A., Riemann, B. C., Jacobi, D. M., & Olatunji, B. O. (2016). Is disgust proneness sensitive to treatment for OCD among youth?: Examination of diagnostic specificity and symptom correlates. Journal of Anxiety Disorders, 44, 47–54. https://doi.org/10.1016/j.janxdis.2016.09.011
Kong, X.-z., Song, Y., Zhen, Z., & Liu, J. (2017). Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese. Cerebral Cortex, 27(2), 1326–1336. https://doi.org/10.1093/cercor/bhv322
Kovas, Y., Haworth, C. M. A., Dale, P. S., & Plomin, R. (2007). The genetic and environmental origins of learning abilities and disabilities in the early school years. Monographs of the Society for Research in Child Development, 72(3), 1–144. https://doi.org/10.1111/j.1540-5834.2007.00439.x
Kueider, A. M., Tanaka, T., An, Y., Kitner-Triolo, M. H., Palchamy, E., Ferrucci, L., & Thambisetty, M. (2016). State- and trait-dependent associations of vitamin-D with brain function during aging. Neurobiology of Aging, 39, 38–45. https://doi.org/10.1016/j.neurobiolaging.2015.11.002
Kurt, S., Fisher, S. E., & Ehret, G. (2012). Foxp2 mutations impair auditory-motor association learning. PLoS One, 7(3), e33130. https://doi.org/10.1371/journal.pone.0033130
Laczó, J., Andel, R., Vyhnalek, M., Matoska, V., Kaplan, V., Nedelska, Z., … Hort, J. (2015). The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobiology of Aging, 36(6), 2024–2033. https://doi.org/10.1016/j.neurobiolaging.2015.03.004
Laurent, C., Eddarkaoui, S., Derisbourg, M., Leboucher, A., Demeyer, D., Carrier, S., … Blum, D. (2014). Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology. Neurobiology of Aging, 35(9), 2079–2090. https://doi.org/10.1016/j.neurobiolaging.2014.03.027
Lee, T., Henry, J. D., Trollor, J. N., & Sachdev, P. S. (2010). Genetic influences on cognitive functions in the elderly: A selective review of twin studies. Brain Research Reviews, 64(1), 1–13. https://doi.org/10.1016/j.brainresrev.2010.02.001
Lenartowicz, A., Kalar, D. J., Congdon, E., & Poldrack, R. A. (2010). Towards an ontology of cognitive control. Topics in Cognitive Science, 2(4), 678–692. https://doi.org/10.1111/j.1756-8765.2010.01100.x
Li, Y., You, Q.-L., Zhang, S.-R., Huang, W.-Y., Zou, W.-J., Jie, W., … Li, J.-M. (2017). Satb2 ablation impairs hippocampus-based long-term spatial memory and short-term working memory and immediate early genes (IEGs)-mediated hippocampal synaptic plasticity. Molecular Neurobiology. https://doi.org/10.1007/s12035-017-0531-5
Lin, Y.-C., & Koleske, A. J. (2010). Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annual Review of Neuroscience, 33, 349–378. https://doi.org/10.1146/annurev-neuro-060909-153204
Lionel, A. C., Crosbie, J., Barbosa, N., Goodale, T., Thiruvahindrapuram, B., Rickaby, J., … Scherer, S. W. (2011). Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Science Translational Medicine, 3(95), 95ra75. https://doi.org/10.1126/scitranslmed.3002464
Liu, J., Shi, Y, Tang, J., Guo, T., Li, X., Yang, Y., … He, L. (2005). SNPs and haplotypes in the S100B gene reveal association with schizophrenia. Biochemical and Biophysical Research Communications, 328(1), 335–341. https://doi.org/10.1016/j.bbrc.2004.12.175
Lubinski, D. (2016). From Terman to today: A century of findings on intellectual precocity. Review of Educational Research, 86(4), 900–944. https://doi.org/10.3102/0034654316675476
Luoma, L. M., & Berry, F. B. (2018). Molecular analysis of NPAS3 functional domains and variants. BMC Molecular Biology, 19, 14. https://doi.org/10.1186/s12867-018-0117-4
Maguire, E. (2001). The retrosplenial contribution to human navigation: A review of lesion and neuroimaging findings. Scandinavian Journal of Psychology, 42(3), 225–238. https://doi.org/10.1111/1467-9450.00233
Mascheretti, S., De Luca, A., Trezzi, V., Peruzzo, D., Nordio, A., Marino, C., & Arrigoni, F. (2017). Neurogenetics of developmental dyslexia: From genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Translational Psychiatry, 7, e987. https://doi.org/10.1038/tp.2016.240
Michán, S., Li, Y., Chou, M. M.-H., Parrella, E., Ge, H., Long, J. M., … Longo, V. D. (2010). SIRT1 is essential for normal cognitive function and synaptic plasticity. Journal of Neuroscience, 30(29), 9695–9707. https://doi.org/10.1523/JNEUROSCI.0027-10.2010
Mori, T., Koyama, N., Arendash, G.W., Horikoshi‐Sakuraba, Y., Tan, J., & Town, T. (2010). Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer's disease. Glia, 58(3), 300–314. https://doi.org/10.1002/glia.20924
Morris, J., Bailey, M. E. S., Baldassarre, D., Cullen, B., de Faire, U., Ferguson, A., … Strawbridge, R. J. (2019). Genetic variation in CADM2 as a link between psychological traits and obesity. Scientific Reports, 9, 7339. https://doi.org/10.1038/s41598-019-43861-9
Mueller, S. C., Cornwell, B. R., Grillon, C., MacIntyre, J., Gorodetsky, E., Goldman, D., … Ernst, M. (2014). Evidence of MAOA genotype involvement in spatial ability in males. Behavioural Brain Research, 267, 106–110. https://doi.org/10.1016/j.bbr.2014.03.025
Mueller, S. C., Temple, V., Cornwell, B., Grillon, C., Pine, D. S., Ernst, M. (2009). Impaired spatial navigation in pediatric anxiety. Journal of Child Psychology and Psychiatry, 50(10), 1227–1234. https://doi.org/10.1111/j.1469-7610.2009.02112.x
Nakamura, K., Kawashima, R., Sato, N., Nakamura, A., Sugiura, M., Kato, T., … Zilles, K. (2000). Functional delineation of the human occipito-temporal areas related to face and scene processing: A PET study. Brain, 123(9), 1903–1912. https://doi.org/10.1093/brain/123.9.1903
Newcombe, N. S, & Frick, A. (2010). Early education for spatial intelligence: Why, What, and How. Mind, Brain, and Education, 4(3), 102–111. https://doi.org/10.1111/J.1751-228X.2010.01089.X
Nishiyama, H., Knöpfel, T., Endo, S., & Itohara, S. (2002). Glial protein S100B modulates long-term neuronal synaptic plasticity. Proceedings of the National Academy of Sciences USA, 99(6), 4037–4042. https://doi.org/10.1073/pnas.052020999
Ouakinin, S. R. S., Barreira, D. P., & Gois, C. J. (2018). Depression and obesity: Integrating the role of stress, neuroendocrine dysfunction and inflammatory pathways. Frontiers in Endocrinology, 9, 431. https://doi.org/10.3389/fendo.2018.00431
Piccione, M., Serra, G., Consiglio, V., Di Fiore, A., Cavani, S., Grasso, M., … Corsello, G. (2012). 14q13.1-21.1 deletion encompassing the HPE8 locus in an adolescent with intellectual disability and bilateral microphthalmia, but without holoprosencephaly. American Journal of Medical Genetics Part A, 158A(6), 1427–1433. https://doi.org/10.1002/ajmg.a.35334
Pickard, B. S., Malloy, M. P., Porteous, D. J., Blackwood, D. H. R., & Muir, W. J. (2005). Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 136B(1), 26–32. https://doi.org/10.1002/ajmg.b.30204
Piras, I. S., Krate, J., Schrauwen, I., Corneveaux, J. J, Serrano, G. E, Sue, L., … Huentelman, M. J. (2017). Whole transcriptome profiling of the human hippocampus suggests an involvement of the KIBRA rs17070145 polymorphism in differential activation of the MAPK signaling pathway. Hippocampus, 27(7), 784–793. https://doi.org/10.1002/hipo.22731
Plomin, R, & Spinath, F. M. (2002). Genetics and general cognitive ability (g). Trends in Cognitive Sciences, 6(4), 169–176. https://doi.org/10.1016/S1364-6613(00)01853-2
Ranscht, B., & Dours-Zimmermann, M. T. (1991). T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron, 7, 391–402. https://doi.org/10.1016/0896-6273(91)90291-7
Redies, C., Hertel, N., & Hübner, C. A. (2012). Cadherins and neuropsychiatric disorders. Brain Research, 1470, 130–144. https://doi.org/10.1016/j.brainres.2012.06.020
Rendall, A. R., Tarkar, A., Contreras-Mora, H. M., LoTurco, J. J., & Fitch, R. H. (2017). Deficits in learning and memory in mice with a mutation of the candidate dyslexia susceptibility gene Dyx1c1. Brain and Language, 172, 30–38. https://doi.org/10.1016/j.bandl.2015.04.008
Rimfeld, K., Shakeshaft, N. G., Malanchini, M., Rodic, M., Selzam, S., Schofield, K., … Plomin, R. (2017). Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. Proceedings of the National Academy of Sciences USA, 114(10), 2777–2782. https://doi.org/10.1073/pnas.1607883114
Rivero, O., Selten, M. M., Sich, S., Popp, S., Bacmeister, L., Amendola, E., … Lesch, K. P. (2015). Cadherin‐13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Translational Psychiatry, 5, e655. https://doi.org/10.1038/tp.2015.152
Robbins, E. M., Krupp, A. J., de Arce, K. P., Ghosh, A. K., Fogel, A. I., Boucard, A., … Biederer, T. (2010). SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron, 68(5), 894–906. https://doi.org/10.1016/j.neuron.2010.11.003
Robinson, E. B., Kirby, A., Ruparel, K., Yang, J., McGrath, L., Anttila, V., … Hakonarson, H. (2015). The genetic architecture of pediatric cognitive abilities in the Philadelphia Neurodevelopmental Cohort. Molecular Psychiatry, 20, 454–458. https://doi.org/10.1038/mp.2014.65
Roche, S., Cassidy, F., Zhao, C., Badger, J., Claffey, E., Mooney, L. … McKeon, P. (2007). Candidate gene analysis of 21q22: Support for S100B as a susceptibility gene for bipolar affective disorder with psychosis. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 144B(8), 1094–1096. https://doi.org/10.1002/ajmg.b.30556
Rodenas-Cuadrado, P., Ho, J., & Vernes, S. C. (2014). Shining a light on CNTNAP2: Complex functions to complex disorders. European Journal of Human Genetics, 22, 171–178. https://doi.org/10.1038/ejhg.2013.100
Rogers, T. D., McKimm, E., Dickson, P. E., Goldowitz, D., Blaha, C. D., & Mittleman, G. (2013). Is autism a disease of the cerebellum? An integration of clinical and pre‐clinical research. Frontiers in Systems Neuroscience, 7, 15. https://doi.org/10.3389/fnsys.2013.00015
Rössert, C., Dean, P., & Porrill, J. (2015). At the edge of chaos: How cerebellar granular layer network dynamics can provide the basis for temporal filters. PLoS Computational Biology, 11(10), e1004515. https://doi.org/10.1371/journal.pcbi.1004515
Ruffino, M., Trussardi, A. N., Gori, S., Finzi, A., Giovagnoli, S., Menghini, D. … Facoetti, A. (2010). Attentional engagement deficits in dyslexic children. Neuropsychologia, 48(13), 3793–3801. https://doi.org/10.1016/j.neuropsychologia.2010.09.002
Sabol, S. Z., Hu, S., & Hamer, D. (1998). A functional polymorphism in the monoamine oxidase A gene promoter. Human Genetics, 103, 273–279. https://doi.org/10.1007/s004390050816
Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., … State, M. W. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87(6), 1215–1233. https://doi.org/10.1016/j.neuron.2015.09.016
Schroeter, M. L., & Steiner, J. (2009). Elevated serum levels of the glial marker protein S100B are not specific for schizophrenia or mood disorders. Molecular Psychiatry, 14, 235–237. https://doi.org/10.1038/mp.2008.85
Schuck, N. W., Doeller, C. F., Schjeide, B.-M. M., Schröder, J., Frensch, P. A., Bertram, L., & Li, S.‐C. (2013). Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task. Hippocampus, 23(10), 919–930. https://doi.org/10.1002/hipo.22148
Shakeshaft, N. G., Rimfeld, K., Schofield, K. L., Selzam, S., Malanchini, M., Rodic, M., … Plomin, R. (2016). Rotation is visualization, 3D is 2D: Using a novel measure to investigate the genetics of special ability. Scientific Reports, 6, 30545. https://doi.org/10.1038/srep30545
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614. https://doi.apa.org/doi/10.1037/0022-0663.93.3.604
Smith, D. M., Barredo, J., & Mizumori, S. J. Y. (2012). Complimentary roles of the hippocampus and retrosplenial cortex in behavioral context discrimination. Hippocampus, 22(5), 1121–1133. https://doi.org/10.1002/hipo.20958
Smith-Spark, J. H., & Fisk, J. E. (2007). Working memory functioning in developmental dyslexia. Memory, 15(1), 34–56. https://doi.org/10.1080/09658210601043384
Snow, R. E. (1999). Commentary: Expanding the breadth and depth of admissions testing. In S. Messick (Ed.), Assessment in higher education (pp. 133–140). Hillsdale, NJ: Erlbaum.
Sorci, G., Bianchi, R., Riuzzi, F., Tubaro, C., Arcuri, C., Giambanco, I., & Donato, R. (2010). S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovascular Psychiatry and Neurology, 2010. https://doi.org/10.1155/2010/656481
Spiers, H. J. (2008). Keeping the goal in mind: Prefrontal contributions to spatial navigation. Neuropsychologia, 46(7), 2106–2108. https://doi.org/10.1016/j.neuropsychologia.2008.01.028
Stanley, J. C. (2000). Helping students learn only what they don’t already know. Psychology, Public Policy, and Law, 6(1), 216–222. https://doi.org/10.1037/1076-8971.6.1.216
Steckler, T., Rammes, G., Sauvage, M., van Gaalen, M. M., Weis, C., Zieglgänsberger, W., & Holsboer, F. (2001). Effects of the monoamine oxidase A inhibitor moclobemide on hippocampal plasticity in GR-impaired transgenic mice. Journal of Psychiatric Research, 35(1), 29–42. https://doi.org/10.1016/s0022-3956(00)00040-6
Super, D. E., & Bachrach, P. B. (1957). Scientific careers and vocational development theory. New York: Bureau of Publications, Teachers College, Columbia University.
Taghizadeh, M., Talaei, S. A., & Salami, M. (2013). Vitamin D deficiency impairs spatial learning in adult rats. Iranian Biomedical Journal, 17(1), 42–48. https://doi.org/10.6091/ibj.1061.2012
Tantra, M., Guo, L., Kim, J., Zainolabidin, N., Eulenburg, V., Augustine, G. J., & Chen, A. I. (2018). Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors. Genes, Brain and Behavior, 17(6), e12466. https://doi.org/10.1111/gbb.12466
Terracciano, A., Tanaka, T., Sutin, A. R., Sanna, S., Deiana, B., Lai, S., … Costa Jr., P. T. (2010). Genome-wide association scan of trait depression. Biological Psychiatry, 68(9), 811–817. https://doi.org/10.1016/j.biopsych.2010.06.030
Thomas, L. A., Akins, M. R., & Biederer, T. (2008). Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. The Journal of Comparative Neurology, 510(1), 47–67. https://doi.org/10.1002/cne.21773
Thompson, L. A., Detterman, D. K., & Plomin, R. (1991). Associations between cognitive abilities and scholastic achievement: Genetic overlap but environmental differences. Psychological Science, 2(3), 158–165.
Thompson, P. M., Hayashi, K. M., de Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., … Toga, A. W. (2004). Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage, 22(4), 1754–1766. https://doi.org/10.1016/j.neuroimage.2004.03.040
Tosto, M. G., Hanscombe, K. B., Haworth, C. M. A., Davis, O. S. P., Petrill, S. A., Dale, P. S., … Kovas, Y. (2014). Why do spatial abilities predict mathematical performance? Developmental Science, 17(3), 462–470. https://doi.org/10.1111/desc.12138
Treutlein, J., Cichon, S., Ridinger, M., Wodarz, N., Soyka, M., Zill, P., … Rietschel, M. (2009). Genome-wide association study of alcohol dependence. Archives of General Psychiatry, 66(7), 773–784. https://doi.org/10.1001/archgenpsychiatry.2009.83
Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: Links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373. https://doi.org/10.1177/0963721413484756
van der Sluis, S., Verhage, M., Posthuma, D., & Dolan, C. V. (2010). Phenotypic complexity, measurement bias, and poor phenotypic resolution contribute to the missing heritability problem in genetic association studies. PLoS One, 5(11), e13929. https://doi.org/10.1371/journal.pone.0013929
van der Werf, I. M., Van Dijck, A., Reyniers, E., Helsmoortel, C., Kumar, A. A., Kalscheuer, V. M., … Kooy, R. F. (2017). Mutations in two large pedigrees highlight the role of ZNF711 in X-linked intellectual disability. Gene, 605, 92–98. https://doi.org/10.1016/j.gene.2016.12.013
Van Eldik, L. J., & Wainwright, M. S. (2003). The Janus face of glial-derived S100B: Beneficial and detrimental functions in the brain. Restorative Neurology and Neuroscience, 21(3–4), 97–108.
Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14(2), 57–63. https://doi.org/10.1016/j.tics.2009.12.003
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127
Wainwright, M. S., Craft, J. M., Griffin, W. S. T., Marks, A., Pineda, J., Padgett, K. R., & Van Eldik, L. J. (2004). Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia. Annals of Neurology, 56(1), 61–67. https://doi.org/10.1002/ana.20142
Walczak‐Sztulpa, J., Eggenschwiler, J., Osborn, D., Brown, D. A., Emma, F., Klingenberg, C., … Kuss, A. W. (2010). Cranioectodermal dysplasia, sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. American Journal of Human Genetics, 86(6), 949–956. https://doi.org/10.1016/j.ajhg.2010.04.012
Wang, S. S.-H., Kloth, A. D., & Badura, A. (2014). The cerebellum, sensitive periods, and autism. Neuron, 83(3), 518–532. https://doi.org/10.1016/j.neuron.2014.07.016
Wang, Y., Yin, X., Rosen, G., Gabel, L., Guadiana, S. M., Sarkisian, M. R., … LoTurco, J. J. (2011). Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of doublecortin. Neuroscience, 190, 398–408. https://doi.org/10.1016/j.neuroscience.2011.06.010
Webb, R. M., Lubinski, D., & Benbow, C. P. (2007). Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology, 99(2), 397–420. https://doi.org/10.1037/0022-0663.99.2.397
Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669–682. https://doi.org/10.1037/a0035261
Yan, X., Wang, Z., Schmidt, V., Gauert, A., Willnow, T. E., Heinig, M., & Poy, M. N. (2018). Cadm2 regulates body weight and energy homeostasis in mice. Molecular Metabolism, 8, 180–188. https://doi.org/10.1016/j.molmet.2017.11.010
Yu, L., Lutz, M. W., Wilson, R. S., Burns, D. K., Roses, A. D., Saunders, A. M., … Bennett, D. A. (2017). TOMM40'523 variant and cognitive decline in older persons with APOE ε3/3 genotype. Neurology, 88(7), 661–668. https://doi.org/10.1212/WNL.0000000000003614
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Copyright (c) 2021 Тахирова З. Р., Казанцева А. В., Еникеева Р. Ф., Вартанян Г. А., Солдатова Е. Л., Завьялова И. Ю., Малых А. С., Давыдова Ю. Д., Валиев Р. Р., Нургалиева А. Х., Хамета Я. А., Хуснутдинова Э. К., Малых С. Б.