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Abstract

Introduction. Visual saliency refers to the perceptual quality of location in a visual scene,
which manifests itself subjectively in its attractiveness to the observer and objectively
in the probability of shifting attention or fixating eye movements on it. This quality
arises from the integration of visual feature maps and is modulated by several central
mechanisms. It is important to distinguish between the terms saliency and conspicuity;
in a theoretical context, these are not the same. This review, for the first time, combines
the results of computer modeling of visual saliency with a detailed discussion of the
theoretical background for creating such models. The theory of feature integration
proposed by A. M. Treisman is examined, along with its advantages and limitations, which
provided the way for the three-level model of visual attention developed by C. Koch and
S. Ullman. According to this theory, focal attention is governed by a “winner-takes-all”
mechanism, which relies on a saliency map encoding the attractiveness of each fragment
of the visual scene. The original theory did not describe how the saliency map is formed,
and this question remains the focus of research using computer modeling. Results and
Discussion. The results of studies on modeling visual saliency are reviewed. In particular,
the early computational model by L. Itti, C. Koch, and E. Niebur, which laid the foundation
for many subsequent developments, is described in detail. Approaches to modeling that
preceded the advent of modern high-performance neural networks are examined, and
a range of contemporary models based on deep learning technologies is presented,
together with their characteristic properties. This is the first comprehensive review of
saliency models published in Russian. Researchers have developed several models of
practical utility, and the paper discusses their potential for real-world application.
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Introduction

Why do we perceive the visible world around us in such a way that we often notice small
details of our surroundings, but sometimes fail to see something we have been searching
for unsuccessfully for a long time? And why can we periodically pay attention—or not
pay attention—to the same object at different times and under different circumstances? A
formal answer is that we usually pay attention to objects that have the quality of saliency.
One could also answer that we notice objects that are conspicuous. Such answers may
seem a little strange and could be perceived as pre-logical; however, it should be noted
that conspicuousness and saliency are fairly well-formalized constructs, filled with
specific content and used in a number of research areas on visual perception. Moreover,
these constructs are not speculative and owe their emergence and content primarily to
the experimental work of cognitive psychologists in the late 1970s and early 1980s. It is
also important to note that outside of a scientific context (and in philological sciences),
the word “saliency” is practically not used in the Russian language. Usually, words of the
same root in Western languages, derived from the Latin salio ("jump, leap”), are translated
as noticeability, significance, expressiveness, etc.; however, as special terms, these words
have different meanings.

The term “visual saliency” has relatively recently entered the Russian language
(Kochurko, Madani, Saburan, Golovko & Kochurko, 2015; Martynova & Balaev, 2015),
is used by a fairly narrow circle of researchers, and therefore requires clarification.
Visual saliency is generally understood as a property of a certain area of an image that
characterizes its ability to attract the observer’s attention. However, this understanding
does notimply that saliency is a property inherent exclusively to the object of observation;
saliency also has a subjective component.
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There are two types of saliency: bottom-up and top-down. Bottom-up saliency is
determined primarily by the physical properties of a fragment of the visual scene and is
processed by stimulus-driven mechanisms of involuntary attention. For example, a red
vertical line among many blue lines will have a high degree of bottom-up saliency (Fig.
1a) (Strictly speaking, this example represents an extreme case where detection can theoretically
be explained in terms of feature maps and saliency, without using the conceptual apparatus of
saliency models; however, it illustrates well the phenomenal side of the issue under discussion).
The perception of such stimuli is often accompanied by a pop-out effect, objectively
expressed in the absence of time-consuming search costs, and subjectively in the ease
and involuntariness of detection. Itis important to note that early studies focused primarily
on bottom-up saliency, and the term “top-down saliency” may have sounded strange in
the past.

Top-down saliency is determined primarily by the perceptual task facing the
observer. Such saliency is assigned to certain objects, features, or combinations thereof
by the subject and is primarily addressed to the mechanisms of voluntary, goal-directed
attention. For instance, a red vertical line among red horizontal and blue vertical lines
(Fig. 1b) will have rather low bottom-up saliency, but if it is designated as a target in an
experiment, its top-down saliency becomes significant. Saliency will increase, and in the
course of sequential visual search, this line will sooner or later become the object of
attention. In classical experiments with eye movement recording, the influence of the task
on attention control was demonstrated by A. L. Yarbus (Yarbus, 1965). Yarbus analyzed the
tracks of image viewing. Images were recorded during free viewing and specified by the
instructions. His conclusion states: “The distribution of fixation points on an object, the
sequence of their changes, their duration, and cyclicality are determined by the content
of the object and the tasks of the observer” (Yarbus, 1965, p. 148).

The professional experience and cultural level of the observer also have an influence.
Yarbus repeatedly notes another idea-eye movements reflect the thought process. At the
same time, Yarbus distinguishes between shifts in attention and eye movements. Both
can be voluntary and involuntary.

Changes in the focus of attention remain in our memory, but the points of fixation
are not retained.

Thus, the saliency of a particular part of an image may vary depending on the
perceptual task facing the subject. Of course, the characteristics of the subject’s attention
also play a role in the formation of saliency, introducing additional “noise” when training
computer models.
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Figure 1

An example of arrays of lines in which the red vertical line is searched for in parallel (a) or
sequentially (b).

la 10

Modeling visual saliency, being directly related to fundamental psychological
problems such as the relationship between the focus of attention and eye movements,
has a long history. While |. M. Sechenov directly identified visual attention with “the
convergence of the visual axes of the eyes on the object being viewed” (Sechenov, 1942,
p. 80, reprinted from the 1866 text), G. von Helmholtz (Helmholtz, 1896) demonstrated
the existence of a mechanism for spatial attention shifts that does not depend on eye
movements (cited in Rozhkova, Belokopytov & lomdina, 2019). Currently, attention
associated with gaze movement is commonly referred to as overt, as opposed to covert,
as discovered by Helmholtz (Podladchikova et al., 2017; Rozhkova et al., 2019). Ideas
about these types of attention in cognitive psychology were significantly developed by M.
Posner (e.g., Posner, 1980), who later proposed a three-component model of attention
(Posner & Petersen, 1990). This model is largely based on neurophysiological data and
describes three subsystems of attention: alerting sistem, orienting, and executive control.
The brain mechanisms and connections between implicitand explicit attention orientation
are not fully understood and are a current topic of neurophysiological research (Petersen
& Posner, 2012). The difficulties of objectively recording covert attention movements,
combined with significant progress in eye-tracking methods, have led to the current
focus on overt attention when testing models of visual saliency. Eye movements serve as

193



194

DenNis V. YavNA
VISUAL SALIENCY: FROM THEORETICAL ASSUMPTIONS TO MODERN HIGH-PERFORMANCE MODELS
RussiaAN PsycHoLoGICAL JOURNAL, 22(3), 2025

PSYCHOPHYSIOLOGY

an objective marker of these acts; it is believed that during fixations, the brain reads most
of the information necessary for solving perceptual tasks (Rayner, 2009). Nevertheless,
early work on saliency modeling focused primarily on covert attention. This apparent
contradiction can be explained by the fact that both covert and overt attention operate
within the same saliency map, i.e., they visit approximately the same locations, although
the duration of focus and sequence of shifts may differ. Thus, “spatial attention shifts are
usually (but not necessarily) accompanied by eye movements” (Theeuwes, 2013, p. 1),
and eye movements “are often considered a proxy for attention shifts” (Borji & Itti, 2013,
p. 186).

Theoretical Background

The theory of feature integration by A. Treisman and G. Gelade had a decisive influence
on the understanding of visual saliency mechanisms. Based on early studies, the authors
put forward propositions representing their theory in its “extreme form” (Treisman &
Gelade, 1980, p. 99). While acknowledging that Gestalt concepts correspond to normal
subjective perceptual experience, they argued that these concepts are less useful for
studying early stages of information processing, where features come first. The visual
scene is initially encoded according to separate features such as color, orientation, spatial
frequency, brightness, and direction of movement. To synthesize these correctly for each
object in a complex image, focal attention sequentially processes the corresponding
locations, acting as a "glue” (Treisman & Gelade, 1980, p. 98) that connects initially
separate features into a single object. Once a composite object is perceived, itis stored in
memory for future recognition. Under certain circumstances (e.g., memory impairment),
features may “float free” or recombine into “illusory conjunctions” (Treisman & Gelade,
1980, p. 98). Features outside the focus of attention influence task performance only
at the level of individual features, not at the level of their combinations. Experiments
confirmed predictions about parallel detection of basic features and the necessity of
sequential scanning for conjunctions of features. Further predictions concerned figure-
ground separation, illusory feature combinations, and the relationship between feature
identification and localization.

The predictions made by the authors regarding various characteristics of the
perception process, based on the proposed concepts, were tested in nine experiments;
their results and corresponding theoretical generalizations were published in 1980
(Treisman & Gelade, 1980). Although the theory has since undergone significant
development, it was this work that had the most important influence on the advancement
of saliency models.

The first set of predictions stated that if basic features can be detected in parallel,
without restrictions on attention, then variations in the number of simultaneously
presented distractors should have little effect on the search for targets defined by such
features (e.g., color red or vertical orientation). Conversely, if focal attention is required
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to detect targets defined by a combination of features (e.g., a red vertical line among
red horizontal and blue vertical lines, Fig. 1b), such targets can only be detected after
sequential scanning of the array of presented elements.

The second group of predictions dealt with the separation of textures and figure-
ground grouping: if these are parallel preattentive processes, they should depend only
on spatial gaps between groups of stimuli that differ in individual features, rather than in
their combinations.

The third group of predictions relates to the possibility of illusory combinations of
features that "float freely” outside the focus of attention.

The fourth group of predictions concerns the relationship between the identification
and localization of features and their combinations. If features outside the focus of
attention can float freely, and the presence of these features can be established without
determining their exact location, then identification and localization are independent
processes. In the case of searching for a single feature, identification may precede
localization; inthe case of searching for combinations, localization precedes identification,
as attention is drawn to a specific location.

The fifth group of predictions pertains to the potential influence of objects outside
the focus of attention on the effectiveness of the search: only features, but not their
combinations, should either facilitate or hinder it.

The verification of these predictions, primarily through visual search experiments,
largely confirmed their validity. B. M. Velichkovsky notes that the theory of feature
integration "has withstood 20 years of experimental testing remarkably well" (Velichkovsky,
2006, p. 295), although it faced challenges in explaining the relatively flat (10-20 ms per
distractor) functions relating to the dependence of search time on the number of elements.
Recall that in sequential search, the slope is approximately 60 ms per element when a
target is absent; if the target is present, the slope decreases by about half, indicating a
potential strategy of exhaustive search: the average number of elements examined by
attention before the target is found is exactly half the number of elements when the
targetis located in a random position. However, Velichkovsky accurately pointed out that
a minimal slope in these functions would suggest viewing up to 100 elements per second,
which does not align with experimental data on covert attention shifts (e.g., Saarinen &
Julesz, 1991). An explanation can be offered within the framework of the theory of guided
(the more common translation of the original term) or driven (according to Velichkovsky)
visual search, developed by J. Wolfe et al. (Wolfe, Cave, & Franzel, 1989) /BcTaBuTb
npuMedanue: Editor's note: These are back-translations of Russian versions of the original
term./. The current version of this theory (in its sixth iteration) at the time of writing this
review is presented in (Wolfe, 2021).

A detailed examination of the theory of guided search is beyond the scope of this
review, especially since it is well known in our country and often serves as the theoretical
basis for research conducted by a number of domestic authors (e.g., Gorbunova, 2023;

195



196

DenNis V. YavNA
VISUAL SALIENCY: FROM THEORETICAL ASSUMPTIONS TO MODERN HIGH-PERFORMANCE MODELS
RussiaAN PsycHoLoGICAL JOURNAL, 22(3), 2025

PSYCHOPHYSIOLOGY

Kruskop, Lunyakova, Dubrovsky & Garusev, 2023; Sapronov & Gorbunova, 2025; Falikman,
2015; Falikman, Utochkin, Markov & Tyurina, 2019)). However, it seems appropriate to
give a brief summary of it in order to show the commonality of the tasks solved within the
framework of the theories of guided search and saliency, as well as the similarity of their
conceptual apparatus.

When we look at a scene, we can see anything in any location, but we cannot
recognize more than a few elements at a time; this is a kind of bottleneck. As with Traiman,
locations are selected by attention so that the features they contain can be glued together
into recognizable objects. But in order for the selection order to be rational (intelligent),
the attention that provides access to the "bottleneck” is guided based on five different
sources of preattentive information, namely:

Top-down guidance

Bottom-up, feature-based guidance

Preceding history (e.g. priming)

Reward
Syntax and semantics of the scene

These sources form a spatial priority map (Serences & Yantis, 2006), a dynamic
landscape of attention, with selective attention directed approximately 20 times per
second (every 50 ms) to the most active location. The nature of foveal bias toward
locations near the fixation point is described by three types of functional visual fields
(FVF): resolution FVF, exploratory eye movement control, and covert attention control.
Looking ahead a little, we note that in describing how attention is shifted, the theory of
guided search explicitly (Wolfe, 2021, p. 1068) on the ideas of Koch and Ullmann (1985)
about the WTA mechanism, which will be discussed in detail below.

ok N e

The element selected by attention is placed in working memory, which also contains
a guiding template and can determine the subsequent direction of attention. For example,
when searching for a banana, attention is directed to target attributes using the templates

"yellow" and "curved” (Wolfe, 2021, p. 1064).

To be identified as targets or rejected as distractors, objects selected by attention
must be compared with target templates stored in the activated long-term memory
(ALTM) fragment activated by the current task. The comparison helps to establish that
the object is not just yellow and curved, but actually the banana that needs to be found.
If there are only a few guiding templates in working memory, there can be many target
templates; as an example, Wolfe cites the so-called hybrid search (Wolfe, 2012), see
also (Angelhardt, Makarov & Gorbunova, 2021; Sapronov, Makarov & Gorbunova, 2023;
Rubtsova & Gorbunova, 2022). These templates can be either specific (a ripe banana) or
much more general (a fruit).

The binding and recognition of the object of attention is modeled as a diffusion
process (Voronin, Zakharov, Tabueva & Merzon, 2020; Ratcliff, 1978), carried out at a
speed of > 150 ms/element. Selection can occur more frequently if several elements are
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recognized simultaneously, albeit asynchronously; this makes controlled search a hybrid
of sequential and parallel processes. For each target pattern stored in the ALTM, there is
one diffuser (diffusion channel) that accumulates data (including noise) approaching the
output threshold. When the data reaches the threshold, the search stops and either a
true or false positive response is given. The search may also stop when the output signal
accumulation threshold is reached, resulting in either a true or false positive response.

The accumulation threshold is adaptive, allowing feedback from previous
presentations to program subsequent searches. Simulation shows that combining
asynchronous diffusion with an output signal can reproduce the basic patterns of
response times and errors obtained in a series of visual search experiments.

Thus, the theory of guided search explicitly describes the algorithm of attentive
selection, closely resembling the theory of saliency. Thanks to this, it successfully
overcomes the limitations of the theory of feature integration. In addition, it significantly
expands the latter in terms of describing the algorithms of decision-making by the
observer. The theory of guided search is developed mainly within the framework of the
theoretical- informational approach and the traditional experimental-psychological
paradigm of cognitive research. Saliency theory is at the intersection of cognitive and
technical sciences and mainly describes the early stages of visual processing associated
with the deployment of attention; modeling is an important part of it.

The theoretical foundations of mathematical and computer modeling of saliency
were laid more than 40 years ago by the work of K. Koch and S. Ullman, which examines
spatial shifts in attention and their possible neural mechanisms (Koch & Ullman, 1985).
It should be noted that the term "saliency” had been used in psychology before, but
as a more general concept that did not reflect the specifics of the work of a particular
sensory system. Thus, as early as 1977, A. Tversky published a significant theoretical
work formalizing the concept of “similarity” (Tversky, 1977) in set-theoretic terms. To
summarize its content briefly, we can say that each object is characterized by a set of
features, some of which are common to other objects, and some of which are distinctive
and unique. Saliency (rather in the sense of "noticeability, significance”) in Tversky is a
property of a feature; it depends both on its physical characteristics stick (brightness, etc.),
as well as from so-called diagnostic factors—contextual relevance and the importance of
this feature for solving a specific task. Saliency occupies an important place in Tversky's
theoretical constructs: thus, a more salient object is more likely to become a reference
point in human judgments about similarity. The degree of similarity between objects a
and b can be assessed on a scale S as:

S(a,b) = @f(ANB) —af(A—B) — Bf(B—4),
¢,af =0,

where A and B are the sets of properties of a and b, respectively, and f is the saliency
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measure, which, like the parameters ¢, a, and B, depends on the context and the task
at hand. Thus, the saliency of an object can be determined within the framework of
assessing the similarity of objects. A fairly simple interpretation of Tversky's ideas is given
by B. Jules in his work (Julesz, 1986): saliency can be defined as a function (e.g., a ratio)
of the number of unique and common features, or as a function of the number of unique
features relative to their total number.

The concept of visual saliency itself was introduced by Koch and Ullman (Koch &
Ullman, 1985) as a designation for the fundamental link in the organization of visual
attention, combining information from individual feature maps into a general map
containing measures of "conspicuity.” The work was theoretical in nature and was largely
based on the ideas expressed by Treisman and Gelade (1980), expanding on them in
terms of explaining the algorithm for switching focal attention. Let us consider this article
in more detail, as it has had a decisive influence on the entire field of attention research,
while remaining virtually unknown in Russia.

The authors begin their article with arguments in favor of a two-level theory of human
visual perception, which assumes the existence of a preattentive level, at which simple
features are processed quickly and in parallel across the entire field of vision, and an
attentional level. At the second level, the specialized focus of processing, i.e., the focus of
attention, is directed at a specific location in the field of view, with the analysis of complex
shapes and object recognition are associated with this level. If specific algorithms that
solve problems such as shape analysis or object recognition in a specific location were
performed in parallel, this would lead to a combinatorial explosion in the volume of
required computations and a shortage of the necessary resources. The authors refer
in particular to the criticism of the capabilities of perceptrons presented by M. Minsky
and S. Papert in their well-known book (Minsky & Papert, 1971), which is of particular
historical interest. Indeed, parallel processing in modern convolutional networks could
hardly serve as a metaphor for the limited capabilities of the parallel stage of information
processing in humans; however, the shallow fully connected perceptrons of those years
were quite suitable for this role. In the end, the authors conclude that after a certain
(parallel) preprocessing stage, the analysis of visual information continues in a sequence
of operations, each of which is applied to a selected location or locations.

In presenting experimental evidence of selective attention, Koch and Ullman rely
on both "psychophysical” (sic!) and physiological data. The existence of a moving
specialized processing focus associated with foveal projections, but not identical to them,
is confirmed by two classes of psychophysical experiments. First, there are the studies
by Traiman and colleagues, in which "the search for a target specified by a single feature
..., turns out to be parallel . . ., while the search for a conjunctive target defined in
terms of several features . . . requires sequential, arbitrarily interrupted scanning among
the presented distractors” (Koch & Ullman, 1985, p. 219). A number of studies devoted
to the identification of visually detectable features also belong to this class of evidence.
Thus, in their studies of texture discrimination, Julesz et al. showed that only a limited
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set of texton features can be detected in parallel (Bergen & Julesz, 1983-0029; Julesz,
1984). Secondly, there are a number of early studies using the spatial cueing paradigm
(Bashinski & Bacharach, 1980; Eriksen & Hoffman, 1972; Posner, 1980; Remington &
Pierce, 1984). Currently, there are several established names for tasks of this type: Posner
cueing task, spatial cueing, Posner paradigm, cueing method, etc. (Gusev & Utochkin,
2012; Shevel & Falikman, 2022). Physiological data also support selective processing of
visual information. Presenting a series of studies recording cellular activity, the authors
conclude that "individual cells in certain parts of the visual system respond differently to
identical physical stimuli, increasing their response as a function of the visual task being
solved” (Koch & Ullman, 1985, p. 220).

As a result of their analysis, the authors formulate a number of fundamental questions
about the mechanisms of selective processing. They are interested in what operations
can be applied to selected locations, how this selection is carried out, and, in particular,
how the change of locations is carried out.

Moving on to theoretical constructs, the authors first introduce the concept of early
representation—a set of topographic cortical maps that encode visual information at
the level of various elementary features, such as boundary orientation, color, disparity,
and direction of motion. Each location in such maps has multiple feature dimensions.
Probably, in accordance with evidence of the existence of spatial-frequency channels
in the visual system (e.g., Campbell & Robson, 1968; Wilson & Bergen, 1979), there may
be sets of maps with different resolutions for each individual feature. The maps contain
neighborhood relations and local inhibitory connections (lateral inhibition), thanks to
which locations that differ significantly from their surroundings can be detected at this
early stage of analysis. Thus, the maps “signal’ the conspicuity of a section of the visual
scene.

We are talking specifically about conspicuity, not saliency. Saliency arises at the
next stage of processing as a separate perceptual mechanism. This explains the need to
directly transfer the term "saliency” into Russian; attempting to translate it could lead to
confusion when naming the levels of processing.

When attention is focused on a particular location, the features present in it must
be transferred to a higher, more abstract and non-topographic level of representation.
The authors note that this formulation of the question does not contradict the idea of
hierarchicalinformation processing in the cortex; we also note that it is consistent with the
basic tenets of feature integration theory. How is the location for attention selected? How
is high-dimensional feature information represented in early representation processed?

The authors suggest that the saliency of a location in the visual scene determines
the level of activity of the corresponding elements in various feature maps, with different
maps encoding saliency within a specific feature dimension. All this diverse information
is combined thanks to a saliency map, which is a single global measure of saliency that,
like feature maps, has a topographical structure. The authors do not describe the exact
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nature of the process of combining feature maps, assuming that it, still being part of the
early visual system, "encodes the saliency of objects in terms of simple properties such as
color, direction of motion, depth, and orientation” (Koch & Ullman, 1985, p. 221). It was
this uncertainty that served as a starting point for a whole new direction of research in the
future. Note that the authors also allowed for the possibility of modulating influences on
the saliency map from higher cortical centers; in the future, such influences would begin
to be implemented in models of top-down saliency.

The central place in Koch and Ullmann's theoretical constructs is occupied by the
main link of attentional selection, which was explicitly absent in the theory of feature
integration—the WTA ("winner takes all") network (Feldman, 1982), which is responsible
for selecting the location for focal attention, the properties of which are then transferred
to the "central representation”; it works with a saliency map.

The WTA mechanism can be viewed as equivalent to a maximum search operator
operating onthe elements of the saliency map xi ; in a neural network, xi can be interpreted
as the electrical activity of an element at location i. WTA maps a set of input elements to
an equivalent set of outputs yi according to the following rule:

y; = 0ifx; < max x;
J

Yi = ;ﬂ:xi] ifx; = m}g;x X,

where f is any increasing function of X; or a constant. Thus, all output elements
except one, corresponding to the most active input element, are set to ().

Ifwe disregard the "hardware” features of the brain substrate of computations, building
a WTA network seems to be a fairly simple task. The authors consider a number of possible
implementations of the network, both fully sequential, which is unacceptable due to its
extremely slow operation, and highly parallel, characterized by too many connections
between processing elements and the inability to process an arbitrary number of inputs.
Based on this, the authors formulate two biologically plausible assumptions, building on
them possible implementations of WTA:

1. "With the exception of some distant excitatory connections, most of them, both
excitatory and inhibitory, are local” (Koch & Ullman, 1985, p. 222).

2. "Each elementary processing element performs only simple, well-defined operations,
such as addition or multiplication. In particular, basic processing elements are incapable
of processing any symbolic information, such as addresses”

There aretwo such implementations intotal, and the authors clearly preferthe second
one. This WTA implementation has a hierarchical pyramidal structure and operates in a
highly parallel mode. First, the maxima among 111 elements from the input set of size 11
are calculated. At the next level of the hierarchy, the process is repeated for 11/1m1 input
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elements; This continues until the pyramid of comparisons closes on the last element,
which displays the global maximum. However, both the absolute value of the maximum
and its location are important for the selection process. It is determined using a second
pyramid of additional elements, in which information is distributed in reverse order. Each
additional elementis associated with an element of the main pyramid and is activated only
when it receives simultaneous excitation from its main element and from an additional
element located at a higher level. "Since at each level the most activated element of the
main pyramid in suppresses the activity of the other 11 — 1 main elements in a local
comparison, associated additional elements, as well as all additional elements in the
lower branches, will never be activated” (Koch & Ullman, 1985, p. 223). Fig. 2 shows a
possible example of a WTA network implementation with 11 = 8Binputs and m = 2
comparator elements. The number of ascending and descending time x computational
steps for such a network should not exceed Zlﬂgmn, the network contains no more
than anf::m— 1] elements. It is assumed assumes that the input values do not
have to be exactly the same.

Figure 2

Second implementation of the WTA network with 71 = 8 input elements. Local comparison is
performed between m= 2 elements. The main elements are shown in light color, the additional
ones in black; x(i)corresponds to the maximum at the network input, y(i)corresponds to the
network response to the detected maximum. According to (Koch & Ullman, 1985).

Local comparison is performed betweentit = 2 elements. Primary elements are
shown in light, secondary elements in black; X;corresponds to the maximum at the
network input, ,Yi the network response to the detected maximum. According to
(Koch & Ullman, 1985).
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The authors provide estimates according to which only a small portion of the available
visual neurons is sufficient for the implementation of the WTA network in a living system
(primates, cats). Presumably, large-cell systems, such as the Y-path in cats, are well suited
for the role of the WTA substrate.

How does the change in locations captured by attention occur across the visual
field? Two mechanisms are possible here, local and central, acting through modification
of the saliency map. The local mechanism can be implemented through adaptation and
weakening of the active location in the saliency map over time; the most active element
is locally inhibited, for example, after a certain time interval. The central mechanism
activates an inhibitory signal from the central representation, where the information
was previously received. There is no contradiction between the existence of these
mechanisms, and they can operate simultaneously; itis likely that the local mechanism is
constantly engaged, while the central mechanism is activated when there is an impulse
to shift attention arbitrarily (Posner, 1980). "Both of these mechanisms implement long-
term inhibition of the selected element of the saliency map, preventing a repeat visit
to the corresponding location for a certain period of time—the so-called inhibition of
attentional return return ( Utochkin & Falikman, 2006; Posner, Cohen, & Rafal, 1982).

The attentional selection mechanisms proposed by Koch and Ullmann, based on
saliency maps and WTA, enable them to offer their interpretation of the effects of parallel
and sequential search, as well as the camouflage of a specific object by others (Treisman,
1982). If the target has a salient feature that distinguishes it from its neighbors, WTA will
immediately determine its location, and the target will be detected in a time that does
not depend on the number of distractors. If the target is determined by a combination
of features, the saliency map will have many local peaks, "in the worst case, as many as
there are objects presented” (Koch & Ullman, 1985, p . 224). If no additional optimization
strateqgy is applied, WTA will go through them; thus, to successfully complete the search,
it will be necessary to view an average of nf'z of the presented objects. Thus, an object

"pops out” because, due to its saliency, it is the first one to be visited, and parallel and

sequential searches are not fundamentally different processes. As for masking, there
are two different strategies: you can reduce the visibility of an object by blending it with
its surroundings (this is roughly how military camouflage works), or you can place it
among very visible objects. In both cases, the activity of the saliency map at the point
corresponding to the target object will decrease relative to its surroundings.

What is the additional optimization strategy that allows, in a significant number of
cases, to avoid the need for a complete search of objects in the visual scene? The authors
believe that such a strategy can be based on the rules of proximity and similarity priorities,
roughly corresponding to the phenomena of perceptual grouping and the Gestalt
principles of the same name. Thus, searching for a target around a selected location
will be more successful if the selection mechanism's preferences are shifted toward
neighboring locations. As experimental confirmation of the priority of proximity, the
authors cite studies demonstrating the dependence of the probability of target detection
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on proximity to the location on which attention is focused (F. L. Engel, 1971, 1974). The
search for objects with a common distinguishing feature will improve if locations with
properties similar to those represented in the current location become preferred. This is

partially confirmed by the results that were in press at the time of writing (Geiger & Lettvin,

1986): the demonstration of a figure at the fixation point makes the same figure appearing
elsewhere in the field of view in the same presentation salient.

The simplest way to implement proximity priority within the WTA mechanism is to
enhance all elements in the saliency map that are adjacent to the currently selected
one. "The output of the WTA mechanism associated with the selected location increases
the saliency of nearby elements in the saliency map by an amount depending on the
distance between that location and its surroundings, thereby facilitating a shift in the
focus of processing to nearby locations,” which "is equivalent to the assertion that there is
attractive potential around each selected location” (Koch & Ullman, 1985, p. 224).

The priority of similarity can be implemented as follows. When triggered, the WTA
mechanism initiates interactions within individual maps of signs at the level of early
representation, thanks to which maps containing currently selected features become
more visible in the vicinity of the selected location. This process does not involve
interaction between feature maps or their precise topographical reference to each other.

If an object with a red horizontal line is selected, the neighboring locations in the "red”

and "horizontal” feature maps will be enhanced; the focus of attention is more likely to
shift to them.” The process that ensures the priority of similarity acts in opposition to
the initial priority of salient locations, which arises due to lateral inhibition within feature
maps; various options for the interaction of these processes are possible.

These are, in general terms, the main theoretical positions put forward by Koch and
Ullmann in 1985. The first computational models of saliency appeared much later, in the
mid-1990s (Baluja & Pomerleau, 1994; Itti, Koch, & Niebur, 1998; Milanese, 1993; Tsotsos et
al,, 1995); as they improved, they began to gain practical significance. Let us now consider
the main results obtained within the framework of various approaches to modeling.

Discussion

Computational saliency Models

Approaches to saliency modeling can be broadly divided into traditional and neural

network approaches. Thanks to the use of modern neural network architectures,

primarily convolutional ones, all records for model training quality have been broken in
recent years (Borji, 2019). The success of neural network models is facilitated not least by
the increase in the volume of publicly available data from eye-tracking studies and the
emergence of standardized and relatively easy-to-use neural network modeling tools. Let
us consider these approaches in more detail, starting with the traditional ones that have
had the greatest impact on the subsequent development of the field.
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The model developed by Laurent Itti, Christoph Koch, and Ernst Niebur served as
the basis for many subsequent models; it also serves as a benchmark for comparing
them (Borji & Itti, 2013). The model analyzes intensity, color, and orientation. In the first
stage, the input color I:T. gq, b) image 640x480 in each of the corresponding channels
is represented as a Gaussian pyramid (9 scales from 1 :1 to 1 :256 with an octave step).
The intensity representation of the image | = I:T +g+ b]f3 is used to create the
pyramid I(J], where 0@ € [U. .8] is the scale. It is also used to normalize the primary
color channels ¥, f , and } ., which is used to separate color hue from intensity. Since
hue changes are not perceived at low brightness, normalization is applied only where [
is greater than 1!1{] of its maximum across the entire image; in other locations, pixel
values are set to zero.

Local feature maps are calculated using a set of linear central-peripheral operators,
which are implemented in the model as a point-by-point difference between fine high-
frequency and coarse low-frequency scale representations (denoted by 6 ): the centeris
represented by pixels at scale ¢ € {2,3,4}, and the neighborhood is the corresponding
pixels at scale§ = € + d where d e {3_4}. Six intensity maps are calculated as

J(c,s) = I(c) © I(s)]-

Based on the primary normalized color channels, four new broadband channels are
created:

e red: R=1r—(g+Db)/2

e green: G=g—(r+b)/2

e blue: B=b—(r+g)/2

»velow: v — (r+ g)/2— |r—gl/2~b

Negative values are set to zero. Pyramids are created from these channels RI:O'] G (J)
B(0) ™Y (o)

Sets of maps for color channels are created similarly to intensity maps, while
channels with double color opposition are modeled (Hohlova, 2012; S. Engel et al.,, 1997):
the centers of the receptive fields of neurons are excited by one color (e.g., red) and
inhibited by another, while the opposite occurs at the periphery. Maps modeling dual
color opposition in the primary visual cortex of humans (green/red (:Rg ) and blue/
yellow (B‘y ), are calculated using the formulas

RG(c,s) = |(R(c) = G(c)) © (G(s) — R(s)],
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BY(c,s) =[(B(c) =Y(c)) © (Y(s) — B(s))I.
Local orientation information is extracted from [ using an oriented Gabor pyramid

0(o,8). where 8 € {0°,45°,90°,135°%}. Orientation feature maps 0(c, s, 6)

encode local differences in orientation between the center and the periphery, represented
by different scales:

0(c,s,0) = |0(c,0) & 0(s, 0)|.

Thus, a total of 4.2 feature maps are created: 6 for intensity, 12 for color, and 24
for orientation.

Combining feature maps into conspicuity and saliency maps is problematic: different

modalities have differentdynamic ranges and use different feature extraction mechanisms,

making them difficult to compare. In addition, salient objects represented on only a few
feature maps may be masked by noise or less salient objects represented on a larger
number of maps. In the absence of a mechanism in the model that provides top-down
control, the authors propose using the map normalization operatorN(_ j which would
increase the global role of those that contain a small number of strong activity peaks and
would lower it for those that contain a large number of peaks of comparable strength.
The application ofN::_ ] involves:

1. bringing map values to a single fixed range [{}__ M] to eliminate modality-specific

amplitude differences;

2. searching for the global maximum of the map M and calculating the average 111~ of

allits local maxima;

3. global multiplication of the map by I:M - ﬁ)
The authors use the model of cortical mechanisms of lateral inhibition to explain

how the operator works (Cannon & Fullenkamp, 1996): when M — 1 is sufficient, the

most active location stands out sharply, and the map becomes more important; if the

difference is small, the map contains nothing unique and turns out to be insignificant.

Z

Feature maps are combined into three saliency maps T , E and 5 , forintensity, color,

and orientation, respectively. Saliency maps are created by summing all the maps of the
Gaussian pyramid after bringing them to a single scale with g =4 ; this operation is
referred to by the authors as ﬂ}:

_ 4 c=4
Izﬂ:";*‘-? :&13 N(I(c,s)),
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_ 4 ec=4
C= EE? =$+3 [NV(RG(c,5)) + N(BY(c, )],

0=  F  N® @ NO@©s ).

fe{0".45%90%135"} c=25=c+3

The process of calculating 5 involves creating four intermediate maps by combining six
feature maps for each 6 ., and then combining them into a single saliency map.

The authors explain the creation of three independent channels I , C and Iﬂ,and
their separate normalization by the hypothesis that similar features compete strongly for
saliency, while different modalities contribute independently to the saliency map. The
three saliency maps are normalized and summed into the final input § of the §Af
saliency map:

§ = % (V) + N(C) + N(0)).

At each moment in time, the maximum activation of the SM map determines the
most salient location in the image on which attention should be focused. To determine
the point to which the model should switch next, one could simply select the most active
location on the map. However, based on considerations of biological plausibility, the
authors model the saliency map as a two-dimensional layer of leaky integrate-and-fire
neurons on the @ = 4 . The model of such neurons includes a single "capacitor” that
accumulates charge from the synaptic input, leakage conductance, and threshold voltage.
When the threshold is reached, an "action potential” (prototypical spike) is generated,
and the charge of the "capacitor” is reset to zero. The maximum activation of the map
enters a biologically plausible two-dimensional WTA neural network, in which synaptic
interactions between elements ensure that only the most active location remains, while
all others are suppressed (here the authors refer us, among other things, to the previously
discussed work (Koch & Ullman, 1985).

Neurons in the SM receive excitatory input from & and are independent of each
other; therefore, their potential in more salient locations increases faster (these neurons
are used as pure integrators and do not fire continuously). Each SM neuron excites its
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corresponding WTA neuron. All WTA neurons also change their state independently of
each other until one ("winner”) is the first to reach the threshold and fire. This triggers

three simultaneous mechanisms:

1. the focus of attention shifts to the location of the winning neuron;

2. global inhibition is triggered and completely suppresses (resets) all WTA neurons;

3. InSM, in the area corresponding to the position and size of the new focus of attention,
local inhibition is temporarily activated; this not only leads to dynamic shifts in focus,
allowing the next most salient location to subsequently become the winner, but also
prevents the focus of attention from immediately returning to the previously visited
location.

Such "inhibition of attention return” has been described in studies of human vision
(see, e.g., (Utochkin & Falikman, 2006)). In addition, Koch and Ullman's "proximity
preference’ rule is modeled (Koch & Ullman, 1985): to slightly reorient the model toward
finding the next salient location close to the previously visited one, in the §Af . in the
area corresponding to the position and size of the new focus of attention, local inhibition
is temporarily activated; this not only leads to dynamic shifts in focus, allowing the next
most salient location to subsequently become the winner, but also prevents the focus of
attention from immediately returning to the previously visited location: in order to slightly
reorient the model to search for the next salient location close to the previously visited
one, in SM, in the immediate vicinity of the current focus of attention, a small excitation
is temporarily activated.

Since this saliency model does not take into account top-down "top-down" controle,

the focus of attention is a simple disk, the radius which is constant and equal to
1 . . . . . .

gﬂlm Ul. W] , where L, W are the height and width of the input image, respectively.

"The time constants, conductivity values, and thresholds of the simulated neurons were
chosen so that the focus shifted from one salient location to another in approximately
30-70 ms, and the previously visited location was suppressed for approximately 500-900
ms, which corresponds to psychophysical data (Posner & Cohen, 1984). The difference in
the relative magnitude of these delays was sufficient to ensure complete scanning of the
image and prevent looping on a limited number of locations. All tuning parameters are
fixed in the author's implementation of the model in C++, and with them, the system
demonstrates temporal stability on all test images. A generalized diagram of the model is
shown in Fig. 3.
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Figure 3
General diagram of the saliency model by L. Itti, K. Koch, and E. Niebur. Adapted from (Itti et al,
1998).

Inputimage "

| Linear filtering

colors ntensiy arientations

..,l — :-;-I

Central-surround differences and noomalization ]

Feature e maps B

":"l (12 mapsl (6 maps) "_'I
Across-scale combinations and normalization ]

~———= Conspicuity _- maps P

(12 mapsl "=

saliency map = —

m Inhibiticn
| Vinner- take-all of return

Attended location

The review by Ali Borji and Laurent Itti (Borji Gamp; Itti, 2013), which essentially
summarizes the development of saliency modeling up to the moment of widespread
interest in deep learning technologies, covers more than fifty models published between
1998 and early 2012. The authors analyze 52 saliency models that primarily consider
ascending attention, although this analysis does not include developments known to
them (Baluja & Pomerleau, 1994; Milanese, 1993; Tsotsos et al., 1995) presented before
1998, i.e., before the publication of "the first complete implementation and verification
of the Koch and Ullmann model proposed by Itti et al.” (Borji & Itti, 2013, p. 186). The
review also analyzes works presenting more generalized models of attention with top-
down control-there are 11 of them, two of which were proposed before 1998 (McCallum,
1996; Rao, Zelinsky, Hayhoe, & Ballard, 2002). It probably makes no sense to list all the
models considered here; however, the theoretical generalizations made by the authors
in the course of their analysis, a summary of which is presented below, are particularly
interesting. The authors highlight the following properties of the models that are
important for categorizing and understanding their features:

1. bottom-up and top-down control. Models can represent predominantly ascending
attention control factors based on certain characteristics of the visual scene, or
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descending factors (knowledge, expectations, reinforcement, current goals, etc.), or take
both into account. At the same time, they differ in:

— the features used. Both individual low-level features (color, orientation, etc.) and
fairly complex object properties can be taken into account. In cases where the model
includes top-down control, a mechanism for adjusting feature detectors can be used.
Models that process features are closely related to purely computational methods of
object detection; cognitive modeling and computer vision enrich each other;

— the degree of scene context consideration. It is known that with very short
exposures (80 ms or less), the observeris able to grasp the main content ("gist”) of the scene.
Its representation does not contain a large number of details of the objects presented in it,
but it can provide sufficient information for coarse discrimination (e.g., inside or outside
a room). The influence of context is also evident in the speed of object detection and in
the characteristics of eye movements. Traditional computational models that take into
account the main content of a scene typically use filtering (including biologically based
methods such as central-peripheral filtering and Gabor filters) or spectral methods to
extract features, the dimensionality of which is then reduced using principal component
analysis (PCA) independent component analysis (ICA), or cluster analysis. The result is
a vector of values ("gist vector”) that characterizes the scene. The authors of the review
note that at the time of writing, the popularity of this approach in computer vision was
growing.

— taking into account the requirements of the task. The task greatly influences the
distribution of attention, and scenes can be interpreted based on the needs that arise to
meet the task requirements. When solving complex tasks, there is a strong connection
between visual cognition and eye movements. Thus, during visual control, most fixations
are directed at areas relevant to the task. Eye movements often reveal the solution
algorithm used by the subject. In particular, in the block copying task (Ballard's paradigm,
for more details, see (Ballard, Hayhoe, & Pelz, 1995; Ballard, Hayhoe, Pook, & Rao, 1997;
Hayhoe & Ballard, 2005)), which involves the test subject reproducing a structure from
elementary "building” blocks of different colors, the test subjects first selected the target
block in the original structure, confirming its position, and then fixed their gaze on the
workspace to place the corresponding block in the correct place. The authors also
provide a list of studies in which activities in natural conditions were investigated in a
similar manner.

The authors of the review note that ascending and descending attention combine to
control our attention, providing several options for implementing the rules for integrating
these processes.

2. only space or space and time. Models can take into account the movement of objects
and predict attention shifts between objects in a static or dynamic scene;
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3. overt and covert attention. Models can describe both overt and covert attention, but
the degree to which they account for covert attention is difficult to assess due to the
complexity of measuring it;

4. objects or spatial locations. Given that there are grounds for distinguishing between
feature-based attention and object-based attention, models may give preference to one
of these types;

5. features used in the model. Many models use traditional features used in integration
theory; however, there are many others, such as mathematically constructed (wavelets,
PCA, ICA), geometric, etc;

6. stimuli and task type. Since real empirical data is needed to test the model, the
authors identify two grounds for distinguishing models based on the stimuli used in data
collection: static/dynamic and artificial/natural. The type of task solved by the observer is
also important. It can be free viewing, visual search, or an interactive task;

7. metrics used for evaluation. When evaluating a model, its prediction is usually
compared with an empirically obtained result (ground truth); often, various versions of
gaze fixation maps are used as such a result. Depending on the map and the type of result
produced by the model (fixation points, two-dimensional probability distribution, etc.),
several modifications of the area under the curve, normalized saliency of the gaze path,
Kulback-Leibler metric, Pearson's correlation coefficient, etc. can be used. A detailed
discussion of various metrics can be found in a more recent work (Bylinskii, Judd, Oliva,
Torralba, & Durand, 2017);

8. eye movement datasets used. At the time of the publication of the review by Itti and
Borji, eye movement data recorded while viewing static images (Bruce & Tsotsos, 2005;
Judd, Ehinger, Durand, & Torralba, 2009) and videos (Marat et al.,, 2009) were freely
available. Many authors used their own data to train and test models, which eventually
became available to other researchers;

9. Models can be classified based on how saliency is calculated. For example, a model
can be based on neuron-like calculations, or it can use formal high-level approaches.
The authors note that some models fall into several categories at once, but nevertheless
use a simple single-level classification in the future:

— cognitive models. Almost all models of attention were created under the influence
of cognitive concepts. However, the authors include in this class those models that are
more closely related to psychology or neurophysiology; the author of this review believes
that this may be a matter of substantive connection, since the algorithms used in these
models intersect in one way or another with psychological and/or neurophysiological
concepts;

— Bayesian models. "Inthese models, prior knowledge (e.g., the context of the scene
or its gist) and sensory information (e.qg., target features) are probabilistically combined
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according to Bayes' rule (e.g., to detect an object of interest)” (Borji & Itti, 2013, p. 194).
These models are capable of learning from data and generalizing various factors;

— models based on decision-making theory. These models are based on the idea
that visual attention should be managed in an optimal way in the context of the current
task; they can be based on very different algorithms (both biologically based and purely
computational);

— models based on information theory. These models are based on the assumption
that salient areas are the most informative in terms of the amount of information they
contain. Computationally, these models are based on comparing various statistical
estimates of image regions (entropy, distribution parameters, etc.);

—  Graphical probability models. "Graphical models can be viewed as a generalized
version of Bayesian models” (Borji & Itti, 2013, p. 197). Such models use graphs that
representthe structure of conditionalindependence of random variables; eye movements
are viewed as a time series. Due to the existence of hidden variables that influence the
formation of eye movements, solutions such as hidden Markov models (HMM), dynamic
Bayesian networks (DBN), and conditional random fields (CRF);

— models based on spectral analysis. This group of models is based on the analysis
of image properties, often with scaling, represented in the frequency domain (amplitude
and phase spectrum);

— models based on pattern classification. These models use machine learning
methods such as support vector machines (SVM), regression, etc. Training is carried out
on specially labeled data (for example, divided into areas, each of which is marked as
salient or non-salient);

— Othermodels. Afairly extensive and highly blurred "class” of models characterized
by originality and based on a wide variety of computational solutions.

Based on these properties, the authors of the review have compiled an extremely
useful summary table of the models they have considered (Borji & Itti, 2013, p. 201),
allowing the reader to quickly navigate the vast array of rather complex developments and
find the necessary bibliographic information. Each of the listed properties is represented
by a column in the table, with the models known to the authors listed in rows; the cells
contain symbols that indicate whether a model has a particular property. Thus, using
the table, one can quickly determine that the classical model of Itti, Koch, and Niebur
(Itti et al., 1998) discussed earlier is ascending, spatial, rather than spatiotemporal, static;
dealing with natural stimuli and the task of free viewing, based on spatial locations rather
than objects, taking into account only simple features (color, brightness, orientation),
cognitive; data for training the model were not used.
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Neural network models of saliency

Moving on to the description of saliency models based on deep learning methods,
we cannot fail to mention the existence of a remarkable review published by A. Borji
in 2021 (Borji, 2021), but available as a preprint since 2019 (Borji, 2019). | would like
to recommend this document to interested readers as a valuable source of reference
information on neural network models and datasets created over the past decade, on the
metrics used, and on methods for evaluating model performance. Given the existence of
this high-quality review, the author of this text (D. Ya.) sets himself two fairly modest tasks:
to acquaint the reader with the history and logic of the development of the field using the
example of the work of one of the most successful research groups working in the field of
saliency modeling; to examine the models created after the publication of Borji's review
and attempt to identify and summarize their characteristic features.

The work of A. Krizhevsky, |. Sutskever, and J. E. Hinton (Krizhevsky, Sutskever, &
Hinton, 2012) sparked another revolution in artificial intelligence research, reviving
widespread interest in deep learning neural networks, which had faded somewhat due
to the rapid development of machine learning approaches such as kernel methods and
decision trees at the turn of the century (see, e.g., (Chollet, 2023)). The model, later named
AlexNET, won a decisive victory at the annual ImageNet competition in 2012, achieving
a record performance of 83% in the classification of 1,000 object categories. The use
of the then-novel multilayer convolutional architecture and graphics processing units
allowed researchers to achieve impressive results in the following years, including in the
modeling of visual saliency.

As early as 2014, a group of researchers from the University of Tubingen (Bethge Lab)
developed the DeepGaze | model (Matthias Kimmerer, Theis, & Bethge, 2015), which
used weights from the neural network of A. Krizhevsky et al. 2015). The use of transfer
learning technology allowed the authors to achieve a significant increase in performance
compared to previously created models. Thus, the correlation between predictions
and tracking data on the MIT300 dataset is 0.6144. The model used the outputs of the
convolutional layers of AlexNET, which were linearly combined with different weights.
The resulting layer was filtered (convolution with a Gaussian kernel), then a weight matrix
implementing a center bias correction was added to it elementwise. In this form, the
result was fed to the softmax layer, at the output of which the distribution of fixation
probabilities was formed. To stimulate sparsity, (1 regularization of weights was applied
in the model.

In 2017, a new version of the model appeared, DeepGaze Il (M. Kimmerer, Wallis,

Gatys, & Bethge, 2017). It used the convolutional part of VGG-19 (Simonyan & Zisserman,
2015) as its base; information was extracted from the conv5_1, relu5_1, relu5_2, conv5_3,
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and relu5_4 layers. The trainable part was made more complex (4 convolutional layers
1x1), but otherwise the model was similar to the previous one. The model demonstrated
very high performance at the time: the correlation between the empirical MIT300 data
and the forecast was 0.7703.

In parallel with it, the DeepGaze ICF model was created, in which, instead of the
basic part in the form of network layers that were pre-trained to recognize objects,
operations for extracting exclusively low-level features were used. Calculations were
performed for brightness and two color difference components in five scales (Gaussian
pyramid) for brightness and contrast, respectively; thus, 30 low-level feature maps were
generated at the output. This model achieved better performance (correlation of 0.5876
on MIT300) than all models that did not use features from neural networks pre-trained to
recognize objects, which, according to the authors, makes it a reliable basis for assessing
the usefulness of high-level features. Thanks to this model, the authors found that some
fixations are much better predicted by low-level features.

The DeepGaze IIE model (Linardos, Kimmerer, Press, & Bethge, 2021), introduced
in 2021, is an improved version of DeepGaze II. The trainable part of the network has
been made deeper, and RelU activations have been replaced with norm and softplus.
Training was performed on the Salicon and then MIT1003 datasets. The main change
concerned the base network: the original VGG-19 could be replaced with other deep
networks trained on the ImageNet dataset (ResNet50 (He, Zhang, Ren, &amp; Sun, 2015),
EfficientNet85 (Tan & Le, 2020), etc.). According to MIT/TUbingen Saliency Benchmark ),
the highest correlation between the prediction and empirical fixation maps was 0.8242;
in fact, this is the best model tested to date and presented on the website. However, the
authors continue to create new versions of the model.

In 2022, DeepGaze Il was introduced (Matthias Kimmerer, Bethge, & Wallis, 2022;
Matthias Kimmerer, Wallis, & Bethge, 2022), which includes a spatial prediction module
that takes into account the influence of scene content on fixation location, and a scan
history module that identifies the influence of earlier fixations and, consequently, the
dynamics of gaze trajectory. The first module broadly replicates previously developed
spatial models; the second uses information about four or fewer previous fixations to
predict the current fixation, which is represented as maps of three features: distance to
the current fixation, as well as x and y displacements. Information about previous fixations
made by the subject is processed in this module and then combined with the spatial
map in the fixation selection network. The final prediction is blurred, combined with
the central offset correction weights, and converted into a probability distribution using
softmax. Judging by the AUC= 0.906 and NSS= 2.957 values reported by the authors,
obtained on MIT300 (the correlation value is not given), the model demonstrates the
highest performance of those previously presented, but data on it on the MIT/Tubingen
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Saliency Benchmark is not yet available. The approach used by the authors allows us to
investigate the influence on perceptual saliency not only of the physical properties of the
image and the task, but also of previously produced fixations.

The idea of processing features extracted from layers of a convolutional neural
network trained to recognize objects is also used by the authors of the TranSalNet
model (Lou, Lin, Marshall, Saupe, & Liu, 2022). When developing the model, they set
themselves not only the task of obtaining maximum results, but also sought to bring the
architecture of the artificial network closer to the human perceptual system. First, the
image is fed into a convolutional encoder. To obtain multi-scale representations, three
sets of feature maps with different spatial dimensions are extracted from the encoder.
Due to the inductive biases inherent in convolutional architectures, the extracted image
representations do not contain contextual information at a large scale, which potentially
makes the saliency model less human-like. The authors draw the reader's attention
to the fact that the human visual system is capable of capturing both local and global
information. The authors stress that the saliency model is not as human-like as it could
be; they emphasize that the human visual system is capable of capturing both local and
global information. Therefore, to obtain a prediction that is more relevant from the point
of view of perception, these feature maps are passed through three encoder transformers
(Vaswanietal., 2023), which allows us to obtain global feature maps with improved context
information transfer. The encoder transformers contain a multi-head self-attention layer
and a multilayer perceptron. Then, a convolutional decoder combines the feature maps
to construct a saliency prediction. The model demonstrates performance comparable to
DeepGaze: when using DenseNet-161 (Huang, Liu, Maaten, &amp; Weinberger, 2018) as
the base network, the correlation between the prediction and the MIT300 data is 0.8070;
with ResNet-50, the correlation decreases slightly (0.7991).

Despite their significant capabilities for forming representations of image elements,
feedforward convolutional neural networks can ignore their internal connections and
lack the potential advantages provided by the use of feedback in visual tasks. This also
applies to saliency modeling. Given this circumstance, the authors of the SalFBNet model
(Ding, imamoglu, Caglayan, Murakawa, & Nakamura, 2022) propose a convolutional
architecture with feedback and recursion. The proposed model can form multiple
contextual representations using a recursive path from higher-level feature blocks to
lower-level layers. To address the problem of training data scarcity, the authors use a
special approach to knowledge transfer, creating a large-scale training set using pre-
trained saliency models listed on the MIT/Tubingen Saliency Benchmark website. First,
they train the proposed model on the artificial data obtained in this way, then retrain
it on real gaze fixations. In addition, to facilitate training their feedback model, the
authors propose a new loss function, which they call sFNE (selective fixation and non-
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fixation error). Numerous experimental results show that SalFBNet with fewer parameters
achieves competitive results in publicly available saliency model tests, which indicates
the effectiveness of both the feedback model itself and the use of artificial data for pre-
training. SalFBNet ranks second in performance after DeepGaze IIE (correlation with
MIT300 data 0.8141).

The Saliency TRansformer (SalTR) model (Dahou Dijilali, McGuinness, & O'Connor,
2024) is based on a new approach to predicting saliency in images, using parallel
decoding in transformer networks to train the network exclusively on fixation maps. To
overcome the optimization challenges for discrete maps, models are typically trained on
continuous maps. The developers of SalTR attempt to build an experimental computing
system that generates saliency datasets. The authors’ approach treats saliency estimation
as a direct prediction problem using a global loss function that predicts individual
fixations through bilateral matching and a transformer-encoder-decoder architecture,
with a ResNet50 base network at the input. Using a fixed set of learned fixation queries,
cross-attention processes image feature information to directly infer fixation points,
which distinguishes this development from other modern models. The authors note
that their approach achieves estimates comparable to other modern approaches in the
Salicon and MIT300 tests. Thus, the implementation of SalTR-Small provides correlations
between predictions and original samples at the level of 0 .84 and 0 .7 for Salicon and
MIT300, respectively, while SalTR- Base provides correlations of 0 .87 and 0.75. The
use of deformable convolutions in the models increases the similarity to 0.86 and 0.76
(small) and 0.89 and 0.8 (base), respectively. Thus, SalTR is indeed one of the best modern
models of visual saliency.

Modeling of visual saliency is also developing in the direction on video stream
processing. In their work (Droste, Jiao, & Noble, 2020), the authors point out that saliency
modeling forimages and videos is considered in the current literature on computer vision
as two independent tasks. And while modeling for images is a well-developed problem,
and progress in this areais slowing down, as seeninthe SALICON and MIT300 benchmarks,
saliency models for video have recently shown rapid growth in the DHF1K benchmark
(Wang et al,, 2021). The authors ask whether it is possible to approach saliency modeling
for images and videos using a single model with mutual benefits. In their opinion, the key
prospects for joint modeling are provided by the application of domain shift (adaptation
of an Al system to use in a new area and/or applying to new data) both between saliency
data for images and for videos, and between different sets of video data. In addition to
an improved algorithm for creating trained Gaussian priors (correction for gaze shift to
the center), four new domain adaptation methods are proposed to solve this problem:
domain-adaptive prior values, domain-adaptive fusion, domain-adaptive smoothing, and
recurrent network bypass. These methods are integrated into a "simple and lightweight”
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(Droste et al,, 2020, p. 1) UNISAL network with an "encoder-recurrent block-decoder”
architecture, trained on saliency data for both images and videos. The training results
are evaluated on the DHF1K, Hollywood-2, and UCF-Sports video datasets, as well as
on the SALICON and MIT300 static datasets. With the same set of parameters, UNISAL
achieves the highest performance at the time of publication on all saliency datasets for
video and is on par with the best models in tests on image data (correlation with MIT300
data is 0.7851); Compared to all competing models using deep learning, the execution
time is reduced by 5-20 times, and the model itself is smaller. The authors also conduct
retrospective analysis and ablation studies (studies of the role of an Al system component
by disabling it), which confirm the importance of domain shift in modeling.

Characteristics of Modern Deep Learning Saliency Models

1 Modular neural network architectures with replaceable modules.

2. Knowledge transfer: leveraging pre-trained networks and artificial datasets for
pre-training.

3. Domain adaptation: extending models across domains, e.g., images and videos.
4. Beyond classical convolution: use of recurrent paths, self-attention, feedback
loops, and transformers.

5. Modular manipulation for ablation studies, enabling analysis of each component’s

contribution.
Conclusion

A considerable amount of time passed between the publication of Koch and Ullmann’s
seminal article (1985) and the practical testing and implementation of their ideas. Early
research focused primarily on the algorithm for forming the initial saliency map, while
many details of its construction were only briefly mentioned in the original work. The
first, traditional stage of saliency model development was characterized by a wide variety
of computational methods and approaches. Some of these solutions were well-aligned
with psychological and neurophysiological data. At this stage, visual saliency models were
largely “transparent” in terms of internal structure, making them especially valuable for
comparison with theoretical models from cognitive science. With the rise of machine
learning methods—such as Bayesian classifiers and support vector machines—particularly
in the first decade of the 21st century, some conventional models began to resemble

“black boxes.” This trend intensified dramatically after the 2012 revolution in neural network

technology, though it also brought impressive gains in performance. There is hope
that, as tools for analyzing the specific algorithms learned by neural networks improve,
the contents of these “black boxes” will become more interpretable. Optimism is also
supported by the growing volume of publicly available data for training saliency models,
as well as a clear understanding in the research community of the importance of task type



Denis V. YAVNA
VISUAL SALIENCY: FROM THEORETICAL ASSUMPTIONS TO MODERN HIGH-PERFORMANCE MODELS
RussIAN PsycHoLoGICAL JOURNAL, 22(3), 2025

PSYCHOPHYSIOLOGY

(e.g., free viewing, visual search) and task characteristics when collecting such data.

As effective computational approaches have matured, the literature has increasingly
explored practical applications of saliency models, including computer vision (Medioni &
Mordohai, 2005), engineering psychology and usability studies (Sun et al., 2019), medical
image analysis (Arun et al,, 2020; Jampani et al., 2012), and video compression (Gitman
et al,, 2014; Lyudvichenko et al., 2017). The first commercial solutions are also emerging.
Thus, the modeling of visual saliency has now acquired significant practical relevance,
enabling both the simulation of attention for technical purposes and the prediction of
attentional shifts in humans.
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