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Abstract
Introduction. Visual saliency refers to the perceptual quality of location in a visual scene, 

which manifests itself subjectively in its attractiveness to the observer and objectively 

in the probability of shifting attention or fixating eye movements on it. This quality 

arises from the integration of visual feature maps and is modulated by several central 

mechanisms. It is important to distinguish between the terms saliency and conspicuity; 

in a theoretical context, these are not the same. This review, for the first time, combines 

the results of computer modeling of visual saliency with a detailed discussion of the 

theoretical background for creating such models. The theory of feature integration 

proposed by A. M. Treisman is examined, along with its advantages and limitations, which 

provided the way for the three-level model of visual attention developed by C. Koch and 

S. Ullman. According to this theory, focal attention is governed by a “winner-takes-all” 

mechanism, which relies on a saliency map encoding the attractiveness of each fragment 

of the visual scene. The original theory did not describe how the saliency map is formed, 

and this question remains the focus of research using computer modeling. Results and 

Discussion. The results of studies on modeling visual saliency are reviewed. In particular, 

the early computational model by L. Itti, C. Koch, and E. Niebur, which laid the foundation 

for many subsequent developments, is described in detail. Approaches to modeling that 

preceded the advent of modern high-performance neural networks are examined, and 

a range of contemporary models based on deep learning technologies is presented, 

together with their characteristic properties. This is the first comprehensive review of 

saliency models published in Russian. Researchers have developed several models of 

practical utility, and the paper discusses their potential for real-world application. 
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Introduction
Why do we perceive the visible world around us in such a way that we often notice small 

details of our surroundings, but sometimes fail to see something we have been searching 

for unsuccessfully for a long time? And why can we periodically pay attention–or not 

pay attention–to the same object at different times and under different circumstances? A 

formal answer is that we usually pay attention to objects that have the quality of saliency. 

One could also answer that we notice objects that are conspicuous. Such answers may 

seem a little strange and could be perceived as pre-logical; however, it should be noted 

that conspicuousness and saliency are fairly well-formalized constructs, filled with 

specific content and used in a number of research areas on visual perception. Moreover, 

these constructs are not speculative and owe their emergence and content primarily to 

the experimental work of cognitive psychologists in the late 1970s and early 1980s. It is 

also important to note that outside of a scientific context (and in philological sciences), 

the word “saliency” is practically not used in the Russian language. Usually, words of the 

same root in Western languages, derived from the Latin salio (“jump, leap”), are translated 

as noticeability, significance, expressiveness, etc.; however, as special terms, these words 

have different meanings. 

The term “visual saliency” has relatively recently entered the Russian language 

(Kochurko, Madani, Saburan, Golovko & Kochurko, 2015; Martynova & Balaev, 2015), 

is used by a fairly narrow circle of researchers, and therefore requires clarification. 

Visual saliency is generally understood as a property of a certain area of an image that 

characterizes its ability to attract the observer’s attention. However, this understanding 

does not imply that saliency is a property inherent exclusively to the object of observation; 

saliency also has a subjective component.
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There are two types of saliency: bottom-up and top-down. Bottom-up saliency is 

determined primarily by the physical properties of a fragment of the visual scene and is 

processed by stimulus-driven mechanisms of involuntary attention. For example, a red 

vertical line among many blue lines will have a high degree of bottom-up saliency (Fig. 

1a) (Strictly speaking, this example represents an extreme case where detection can theoretically 

be explained in terms of feature maps and saliency, without using the conceptual apparatus of 

saliency models; however, it illustrates well the phenomenal side of the issue under discussion). 

The perception of such stimuli is often accompanied by a pop-out effect, objectively 

expressed in the absence of time-consuming search costs, and subjectively in the ease 

and involuntariness of detection. It is important to note that early studies focused primarily 

on bottom-up saliency, and the term “top-down saliency” may have sounded strange in 

the past.

Top-down saliency is determined primarily by the perceptual task facing the 

observer. Such saliency is assigned to certain objects, features, or combinations thereof 

by the subject and is primarily addressed to the mechanisms of voluntary, goal-directed 

attention. For instance, a red vertical line among red horizontal and blue vertical lines 

(Fig. 1b) will have rather low bottom-up saliency, but if it is designated as a target in an 

experiment, its top-down saliency becomes significant. Saliency will increase, and in the 

course of sequential visual search, this line will sooner or later become the object of 

attention. In classical experiments with eye movement recording, the influence of the task 

on attention control was demonstrated by A. L. Yarbus (Yarbus, 1965). Yarbus analyzed the 

tracks of image viewing. Images were recorded during free viewing and specified by the 

instructions. His conclusion states: “The distribution of fixation points on an object, the 

sequence of their changes, their duration, and cyclicality are determined by the content 

of the object and the tasks of the observer” (Yarbus, 1965, p. 148).

The professional experience and cultural level of the observer also have an influence. 

Yarbus repeatedly notes another idea-eye movements reflect the thought process. At the 

same time, Yarbus distinguishes between shifts in attention and eye movements. Both 

can be voluntary and involuntary.

Changes in the focus of attention remain in our memory, but the points of fixation 

are not retained.

Thus, the saliency of a particular part of an image may vary depending on the 

perceptual task facing the subject. Of course, the characteristics of the subject’s attention 

also play a role in the formation of saliency, introducing additional “noise” when training 

computer models.
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Figure 1

An example of arrays of lines in which the red vertical line is searched for in parallel (a) or 
sequentially (b).

 

  

1а 1б 

 

Modeling visual saliency, being directly related to fundamental psychological 

problems such as the relationship between the focus of attention and eye movements, 

has a long history. While I. M. Sechenov directly identified visual attention with “the 

convergence of the visual axes of the eyes on the object being viewed” (Sechenov, 1942, 

p. 80, reprinted from the 1866 text), G. von Helmholtz (Helmholtz, 1896) demonstrated 

the existence of a mechanism for spatial attention shifts that does not depend on eye 

movements (cited in Rozhkova, Belokopytov & Iomdina, 2019). Currently, attention 

associated with gaze movement is commonly referred to as overt, as opposed to covert, 

as discovered by Helmholtz (Podladchikova et al., 2017; Rozhkova et al., 2019). Ideas 

about these types of attention in cognitive psychology were significantly developed by M. 

Posner (e.g., Posner, 1980), who later proposed a three-component model of attention 

(Posner & Petersen, 1990). This model is largely based on neurophysiological data and 

describes three subsystems of attention: alerting sistem, orienting, and executive control. 

The brain mechanisms and connections between implicit and explicit attention orientation 

are not fully understood and are a current topic of neurophysiological research (Petersen 

& Posner, 2012). The difficulties of objectively recording covert attention movements, 

combined with significant progress in eye-tracking methods, have led to the current 

focus on overt attention when testing models of visual saliency. Eye movements serve as 
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an objective marker of these acts; it is believed that during fixations, the brain reads most 

of the information necessary for solving perceptual tasks (Rayner, 2009). Nevertheless, 

early work on saliency modeling focused primarily on covert attention. This apparent 

contradiction can be explained by the fact that both covert and overt attention operate 

within the same saliency map, i.e., they visit approximately the same locations, although 

the duration of focus and sequence of shifts may differ. Thus, “spatial attention shifts are 

usually (but not necessarily) accompanied by eye movements” (Theeuwes, 2013, p. 1), 

and eye movements “are often considered a proxy for attention shifts” (Borji & Itti, 2013, 

p. 186).

Theoretical Background
The theory of feature integration by A. Treisman and G. Gelade had a decisive influence 

on the understanding of visual saliency mechanisms. Based on early studies, the authors 

put forward propositions representing their theory in its “extreme form” (Treisman & 

Gelade, 1980, p. 99). While acknowledging that Gestalt concepts correspond to normal 

subjective perceptual experience, they argued that these concepts are less useful for 

studying early stages of information processing, where features come first. The visual 

scene is initially encoded according to separate features such as color, orientation, spatial 

frequency, brightness, and direction of movement. To synthesize these correctly for each 

object in a complex image, focal attention sequentially processes the corresponding 

locations, acting as a “glue” (Treisman & Gelade, 1980, p. 98) that connects initially 

separate features into a single object. Once a composite object is perceived, it is stored in 

memory for future recognition. Under certain circumstances (e.g., memory impairment), 

features may “float free” or recombine into “illusory conjunctions” (Treisman & Gelade, 

1980, p. 98). Features outside the focus of attention influence task performance only 

at the level of individual features, not at the level of their combinations. Experiments 

confirmed predictions about parallel detection of basic features and the necessity of 

sequential scanning for conjunctions of features. Further predictions concerned figure-

ground separation, illusory feature combinations, and the relationship between feature 

identification and localization.

The predictions made by the authors regarding various characteristics of the 

perception process, based on the proposed concepts, were tested in nine experiments; 

their results and corresponding theoretical generalizations were published in 1980 

(Treisman & Gelade, 1980). Although the theory has since undergone significant 

development, it was this work that had the most important influence on the advancement 

of saliency models.

The first set of predictions stated that if basic features can be detected in parallel, 

without restrictions on attention, then variations in the number of simultaneously 

presented distractors should have little effect on the search for targets defined by such 

features (e.g., color red or vertical orientation). Conversely, if focal attention is required 
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to detect targets defined by a combination of features (e.g., a red vertical line among 

red horizontal and blue vertical lines, Fig. 1b), such targets can only be detected after 

sequential scanning of the array of presented elements.

The second group of predictions dealt with the separation of textures and figure-

ground grouping: if these are parallel preattentive processes, they should depend only 

on spatial gaps between groups of stimuli that differ in individual features, rather than in 

their combinations.

The third group of predictions relates to the possibility of illusory combinations of 

features that "float freely" outside the focus of attention.

The fourth group of predictions concerns the relationship between the identification 

and localization of features and their combinations. If features outside the focus of 

attention can float freely, and the presence of these features can be established without 

determining their exact location, then identification and localization are independent 

processes. In the case of searching for a single feature, identification may precede 

localization; in the case of searching for combinations, localization precedes identification, 

as attention is drawn to a specific location.

The fifth group of predictions pertains to the potential influence of objects outside 

the focus of attention on the effectiveness of the search: only features, but not their 

combinations, should either facilitate or hinder it.

The verification of these predictions, primarily through visual search experiments, 

largely confirmed their validity. B. M. Velichkovsky notes that the theory of feature 

integration "has withstood 20 years of experimental testing remarkably well" (Velichkovsky, 

2006, p. 295), although it faced challenges in explaining the relatively flat (10–20 ms per 

distractor) functions relating to the dependence of search time on the number of elements. 

Recall that in sequential search, the slope is approximately 60 ms per element when a 

target is absent; if the target is present, the slope decreases by about half, indicating a 

potential strategy of exhaustive search: the average number of elements examined by 

attention before the target is found is exactly half the number of elements when the 

target is located in a random position. However, Velichkovsky accurately pointed out that 

a minimal slope in these functions would suggest viewing up to 100 elements per second, 

which does not align with experimental data on covert attention shifts (e.g., Saarinen & 

Julesz, 1991). An explanation can be offered within the framework of the theory of guided 

(the more common translation of the original term) or driven (according to Velichkovsky) 

visual search, developed by J. Wolfe et al. (Wolfe, Cave, & Franzel, 1989) /Вставить 

примечание: Editor's note: These are back-translations of Russian versions of the original 

term./. The current version of this theory (in its sixth iteration) at the time of writing this 

review is presented in (Wolfe, 2021).

A detailed examination of the theory of guided search is beyond the scope of this 

review, especially since it is well known in our country and often serves as the theoretical 

basis for research conducted by a number of domestic authors (e.g., Gorbunova, 2023; 
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Kruskop, Lunyakova, Dubrovsky & Garusev, 2023; Sapronov & Gorbunova, 2025; Falikman, 

2015; Falikman, Utochkin, Markov & Tyurina, 2019)). However, it seems appropriate to 

give a brief summary of it in order to show the commonality of the tasks solved within the 

framework of the theories of guided search and saliency, as well as the similarity of their 

conceptual apparatus.

When we look at a scene, we can see anything in any location, but we cannot 

recognize more than a few elements at a time; this is a kind of bottleneck. As with Traiman, 

locations are selected by attention so that the features they contain can be glued together 

into recognizable objects. But in order for the selection order to be rational (intelligent), 

the attention that provides access to the "bottleneck" is guided based on five different 

sources of preattentive information, namely:

1.	 Top-down guidance

2.	 Bottom-up, feature-based guidance

3.	 Preceding history (e.g. priming)

4.	 Reward

5.	 Syntax and semantics of the scene

These sources form a spatial priority map (Serences & Yantis, 2006), a dynamic 

landscape of attention, with selective attention directed approximately 20 times per 

second (every 50 ms) to the most active location. The nature of foveal bias toward 

locations near the fixation point is described by three types of functional visual fields 

(FVF): resolution FVF, exploratory eye movement control, and covert attention control. 

Looking ahead a little, we note that in describing how attention is shifted, the theory of 

guided search explicitly (Wolfe, 2021, p. 1068) on the ideas of Koch and Ullmann (1985) 

about the WTA mechanism, which will be discussed in detail below.

The element selected by attention is placed in working memory, which also contains 

a guiding template and can determine the subsequent direction of attention. For example, 

when searching for a banana, attention is directed to target attributes using the templates 

"yellow" and "curved" (Wolfe, 2021, p. 1064).

To be identified as targets or rejected as distractors, objects selected by attention 

must be compared with target templates stored in the activated long-term memory 

(ALTM) fragment activated by the current task. The comparison helps to establish that 

the object is not just yellow and curved, but actually the banana that needs to be found. 

If there are only a few guiding templates in working memory, there can be many target 

templates; as an example, Wolfe cites the so-called hybrid search (Wolfe, 2012), see 

also (Angelhardt, Makarov & Gorbunova, 2021; Sapronov, Makarov & Gorbunova, 2023; 

Rubtsova & Gorbunova, 2022). These templates can be either specific (a ripe banana) or 

much more general (a fruit).

The binding and recognition of the object of attention is modeled as a diffusion 

process (Voronin, Zakharov, Tabueva & Merzon, 2020; Ratcliff, 1978), carried out at a 

speed of > 150 ms/element. Selection can occur more frequently if several elements are 
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recognized simultaneously, albeit asynchronously; this makes controlled search a hybrid 

of sequential and parallel processes. For each target pattern stored in the ALTM, there is 

one diffuser (diffusion channel) that accumulates data (including noise) approaching the 

output threshold. When the data reaches the threshold, the search stops and either a 

true or false positive response is given. The search may also stop when the output signal 

accumulation threshold is reached, resulting in either a true or false positive response.

The accumulation threshold is adaptive, allowing feedback from previous 

presentations to program subsequent searches. Simulation shows that combining 

asynchronous diffusion with an output signal can reproduce the basic patterns of 

response times and errors obtained in a series of visual search experiments.

Thus, the theory of guided search explicitly describes the algorithm of attentive 

selection, closely resembling the theory of saliency. Thanks to this, it successfully 

overcomes the limitations of the theory of feature integration. In addition, it significantly 

expands the latter in terms of describing the algorithms of decision-making by the 

observer. The theory of guided search is developed mainly within the framework of the 

theoretical- informational approach and the traditional experimental-psychological 

paradigm of cognitive research. Saliency theory is at the intersection of cognitive and 

technical sciences and mainly describes the early stages of visual processing associated 

with the deployment of attention; modeling is an important part of it.

The theoretical foundations of mathematical and computer modeling of saliency 

were laid more than 40 years ago by the work of K. Koch and S. Ullman, which examines 

spatial shifts in attention and their possible neural mechanisms (Koch & Ullman, 1985). 

It should be noted that the term "saliency" had been used in psychology before, but 

as a more general concept that did not reflect the specifics of the work of a particular 

sensory system. Thus, as early as 1977, A. Tversky published a significant theoretical 

work formalizing the concept of "similarity" (Tversky, 1977) in set-theoretic terms. To 

summarize its content briefly, we can say that each object is characterized by a set of 

features, some of which are common to other objects, and some of which are distinctive 

and unique. Saliency (rather in the sense of "noticeability, significance") in Tversky is a 

property of a feature; it depends both on its physical characteristics stick (brightness, etc.), 

as well as from so-called diagnostic factors–contextual relevance and the importance of 

this feature for solving a specific task. Saliency occupies an important place in Tversky's 

theoretical constructs: thus, a more salient object is more likely to become a reference 

point in human judgments about similarity. The degree of similarity between objects a 

and b can be assessed on a scale S as:

where A and B are the sets of properties of a and b, respectively, and f is the saliency 
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measure, which, like the parameters ϕ, α, and β, depends on the context and the task 

at hand. Thus, the saliency of an object can be determined within the framework of 

assessing the similarity of objects. A fairly simple interpretation of Tversky's ideas is given 

by B. Jules in his work (Julesz, 1986): saliency can be defined as a function (e.g., a ratio) 

of the number of unique and common features, or as a function of the number of unique 

features relative to their total number.

The concept of visual saliency itself was introduced by Koch and Ullman (Koch & 

Ullman, 1985) as a designation for the fundamental link in the organization of visual 

attention, combining information from individual feature maps into a general map 

containing measures of "conspicuity." The work was theoretical in nature and was largely 

based on the ideas expressed by Treisman and Gelade (1980), expanding on them in 

terms of explaining the algorithm for switching focal attention. Let us consider this article 

in more detail, as it has had a decisive influence on the entire field of attention research, 

while remaining virtually unknown in Russia.

The authors begin their article with arguments in favor of a two-level theory of human 

visual perception, which assumes the existence of a preattentive level, at which simple 

features are processed quickly and in parallel across the entire field of vision, and an 

attentional level. At the second level, the specialized focus of processing, i.e., the focus of 

attention, is directed at a specific location in the field of view, with the analysis of complex 

shapes and object recognition are associated with this level. If specific algorithms that 

solve problems such as shape analysis or object recognition in a specific location were 

performed in parallel, this would lead to a combinatorial explosion in the volume of 

required computations and a shortage of the necessary resources. The authors refer 

in particular to the criticism of the capabilities of perceptrons presented by M. Minsky 

and S. Papert in their well-known book (Minsky & Papert, 1971), which is of particular 

historical interest. Indeed, parallel processing in modern convolutional networks could 

hardly serve as a metaphor for the limited capabilities of the parallel stage of information 

processing in humans; however, the shallow fully connected perceptrons of those years 

were quite suitable for this role. In the end, the authors conclude that after a certain 

(parallel) preprocessing stage, the analysis of visual information continues in a sequence 

of operations, each of which is applied to a selected location or locations.

In presenting experimental evidence of selective attention, Koch and Ullman rely 

on both "psychophysical" (sic!) and physiological data. The existence of a moving 

specialized processing focus associated with foveal projections, but not identical to them, 

is confirmed by two classes of psychophysical experiments. First, there are the studies 

by Traiman and colleagues, in which "the search for a target specified by a single feature 

. . . , turns out to be parallel . . . , while the search for a conjunctive target defined in 

terms of several features . . . requires sequential, arbitrarily interrupted scanning among 

the presented distractors" (Koch & Ullman, 1985, p. 219). A number of studies devoted 

to the identification of visually detectable features also belong to this class of evidence. 

Thus, in their studies of texture discrimination, Julesz et al. showed that only a limited 
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set of texton features can be detected in parallel (Bergen & Julesz, 1983–0029; Julesz, 

1984). Secondly, there are a number of early studies using the spatial cueing paradigm 

(Bashinski & Bacharach, 1980; Eriksen & Hoffman, 1972; Posner, 1980; Remington & 

Pierce, 1984). Currently, there are several established names for tasks of this type: Posner 

cueing task, spatial cueing, Posner paradigm, cueing method, etc. (Gusev & Utochkin, 

2012; Shevel & Falikman, 2022). Physiological data also support selective processing of 

visual information. Presenting a series of studies recording cellular activity, the authors 

conclude that "individual cells in certain parts of the visual system respond differently to 

identical physical stimuli, increasing their response as a function of the visual task being 

solved" (Koch & Ullman, 1985, p. 220).

As a result of their analysis, the authors formulate a number of fundamental questions 

about the mechanisms of selective processing. They are interested in what operations 

can be applied to selected locations, how this selection is carried out, and, in particular, 

how the change of locations is carried out.

Moving on to theoretical constructs, the authors first introduce the concept of early 

representation–a set of topographic cortical maps that encode visual information at 

the level of various elementary features, such as boundary orientation, color, disparity, 

and direction of motion. Each location in such maps has multiple feature dimensions. 

Probably, in accordance with evidence of the existence of spatial-frequency channels 

in the visual system (e.g., Campbell & Robson, 1968; Wilson & Bergen, 1979), there may 

be sets of maps with different resolutions for each individual feature. The maps contain 

neighborhood relations and local inhibitory connections (lateral inhibition), thanks to 

which locations that differ significantly from their surroundings can be detected at this 

early stage of analysis. Thus, the maps "signal" the conspicuity of a section of the visual 

scene.

We are talking specifically about conspicuity, not saliency. Saliency arises at the 

next stage of processing as a separate perceptual mechanism. This explains the need to 

directly transfer the term "saliency" into Russian; attempting to translate it could lead to 

confusion when naming the levels of processing.

When attention is focused on a particular location, the features present in it must 

be transferred to a higher, more abstract and non-topographic level of representation. 

The authors note that this formulation of the question does not contradict the idea of 

hierarchical information processing in the cortex; we also note that it is consistent with the 

basic tenets of feature integration theory. How is the location for attention selected? How 

is high-dimensional feature information represented in early representation processed?

The authors suggest that the saliency of a location in the visual scene determines 

the level of activity of the corresponding elements in various feature maps, with different 

maps encoding saliency within a specific feature dimension. All this diverse information 

is combined thanks to a saliency map, which is a single global measure of saliency that, 

like feature maps, has a topographical structure. The authors do not describe the exact 
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nature of the process of combining feature maps, assuming that it, still being part of the 

early visual system, "encodes the saliency of objects in terms of simple properties such as 

color, direction of motion, depth, and orientation" (Koch & Ullman, 1985, p. 221). It was 

this uncertainty that served as a starting point for a whole new direction of research in the 

future. Note that the authors also allowed for the possibility of modulating influences on 

the saliency map from higher cortical centers; in the future, such influences would begin 

to be implemented in models of top-down saliency.

The central place in Koch and Ullmann's theoretical constructs is occupied by the 

main link of attentional selection, which was explicitly absent in the theory of feature 

integration–the WTA ("winner takes all") network (Feldman, 1982), which is responsible 

for selecting the location for focal attention, the properties of which are then transferred 

to the "central representation"; it works with a saliency map.

The WTA mechanism can be viewed as equivalent to a maximum search operator 

operating on the elements of the saliency map xi ; in a neural network, xi can be interpreted 

as the electrical activity of an element at location i. WTA maps a set of input elements to 

an equivalent set of outputs yi according to the following rule:

where f is any increasing function of  or a constant. Thus, all output elements 

except one, corresponding to the most active input element, are set to .

If we disregard the "hardware" features of the brain substrate of computations, building 

a WTA network seems to be a fairly simple task. The authors consider a number of possible 

implementations of the network, both fully sequential, which is unacceptable due to its 

extremely slow operation, and highly parallel, characterized by too many connections 

between processing elements and the inability to process an arbitrary number of inputs. 

Based on this, the authors formulate two biologically plausible assumptions, building on 

them possible implementations of WTA:

1.	 "With the exception of some distant excitatory connections, most of them, both 

excitatory and inhibitory, are local" (Koch & Ullman, 1985, p. 222).

2.	 "Each elementary processing element performs only simple, well-defined operations, 

such as addition or multiplication. In particular, basic processing elements are incapable 

of processing any symbolic information, such as addresses".

There are two such implementations in total, and the authors clearly prefer the second 

one. This WTA implementation has a hierarchical pyramidal structure and operates in a 

highly parallel mode. First, the maxima among  elements from the input set of size  

are calculated. At the next level of the hierarchy, the process is repeated for  input 
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elements; This continues until the pyramid of comparisons closes on the last element, 

which displays the global maximum. However, both the absolute value of the maximum 

and its location are important for the selection process. It is determined using a second 

pyramid of additional elements, in which information is distributed in reverse order. Each 

additional element is associated with an element of the main pyramid and is activated only 

when it receives simultaneous excitation from its main element and from an additional 

element located at a higher level. "Since at each level the most activated element of the 

main pyramid in suppresses the activity of the other  main elements in a local 

comparison, associated additional elements, as well as all additional elements in the 

lower branches, will never be activated" (Koch & Ullman, 1985, p. 223). Fig. 2 shows a 

possible example of a WTA network implementation with inputs and  

comparator elements. The number of ascending and descending time´ x computational 

steps for such a network should not exceed , the network contains no more 

than  elements. It is assumed assumes that the input values do not 

have to be exactly the same.

Figure 2

Second implementation of the WTA network with  input elements. Local comparison is 
performed between m= 2 elements. The main elements are shown in light color, the additional 
ones in black; x(i)corresponds to the maximum at the network input, y(i)corresponds to the 
network response to the detected maximum. According to (Koch & Ullman, 1985).

Local comparison is performed between  elements. Primary elements are 

shown in light, secondary elements in black; corresponds to the maximum at the 

network input, ,  the network response to the detected maximum. According to 

(Koch & Ullman, 1985).
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The authors provide estimates according to which only a small portion of the available 

visual neurons is sufficient for the implementation of the WTA network in a living system 

(primates, cats). Presumably, large-cell systems, such as the Y-path in cats, are well suited 

for the role of the WTA substrate.

How does the change in locations captured by attention occur across the visual 

field? Two mechanisms are possible here, local and central, acting through modification 

of the saliency map. The local mechanism can be implemented through adaptation and 

weakening of the active location in the saliency map over time; the most active element 

is locally inhibited, for example, after a certain time interval. The central mechanism 

activates an inhibitory signal from the central representation, where the information 

was previously received. There is no contradiction between the existence of these 

mechanisms, and they can operate simultaneously; it is likely that the local mechanism is 

constantly engaged, while the central mechanism is activated when there is an impulse 

to shift attention arbitrarily (Posner, 1980). ´Both of these mechanisms implement long-

term inhibition of the selected element of the saliency map, preventing a repeat visit 

to the corresponding location for a certain period of time–the so-called inhibition of 

attentional return return ( Utochkin & Falikman, 2006; Posner, Cohen, & Rafal, 1982).

The attentional selection mechanisms proposed by Koch and Ullmann, based on 

saliency maps and WTA, enable them to offer their interpretation of the effects of parallel 

and sequential search, as well as the camouflage of a specific object by others (Treisman, 

1982). If the target has a salient feature that distinguishes it from its neighbors, WTA will 

immediately determine its location, and the target will be detected in a time that does 

not depend on the number of distractors. If the target is determined by a combination 

of features, the saliency map will have many local peaks, "in the worst case, as many as 

there are objects presented" (Koch & Ullman, 1985, p . 224). If no additional optimization 

strategy is applied, WTA will go through them; thus, to successfully complete the search, 

it will be necessary to view an average of  of the presented objects. Thus, an object 

"pops out" because, due to its saliency, it is the first one to be visited, and parallel and 

sequential searches are not fundamentally different processes. As for masking, there 

are two different strategies: you can reduce the visibility of an object by blending it with 

its surroundings (this is roughly how military camouflage works), or you can place it 

among very visible objects. In both cases, the activity of the saliency map at the point 

corresponding to the target object will decrease relative to its surroundings.

What is the additional optimization strategy that allows, in a significant number of 

cases, to avoid the need for a complete search of objects in the visual scene? The authors 

believe that such a strategy can be based on the rules of proximity and similarity priorities, 

roughly corresponding to the phenomena of perceptual grouping and the Gestalt 

principles of the same name. Thus, searching for a target around a selected location 

will be more successful if the selection mechanism's preferences are shifted toward 

neighboring locations. As experimental confirmation of the priority of proximity, the 

authors cite studies demonstrating the dependence of the probability of target detection 
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on proximity to the location on which attention is focused (F. L. Engel, 1971, 1974). The 

search for objects with a common distinguishing feature will improve if locations with 

properties similar to those represented in the current location become preferred. This is 

partially confirmed by the results that were in press at the time of writing (Geiger & Lettvin, 

1986): the demonstration of a figure at the fixation point makes the same figure appearing 

elsewhere in the field of view in the same presentation salient.

The simplest way to implement proximity priority within the WTA mechanism is to 

enhance all elements in the saliency map that are adjacent to the currently selected 

one. "The output of the WTA mechanism associated with the selected location increases 

the saliency of nearby elements in the saliency map by an amount depending on the 

distance between that location and its surroundings, thereby facilitating a shift in the 

focus of processing to nearby locations," which "is equivalent to the assertion that there is 

attractive potential around each selected location" (Koch & Ullman, 1985, p. 224).

The priority of similarity can be implemented as follows. When triggered, the WTA 

mechanism initiates interactions within individual maps of signs at the level of early 

representation, thanks to which maps containing currently selected features become 

more visible in the vicinity of the selected location. This process does not involve 

interaction between feature maps or their precise topographical reference to each other. 

If an object with a red horizontal line is selected, the neighboring locations in the "red" 

and "horizontal" feature maps will be enhanced; the focus of attention is more likely to 

shift to them.´ The process that ensures the priority of similarity acts in opposition to 

the initial priority of salient locations, which arises due to lateral inhibition within feature 

maps; various options for the interaction of these processes are possible.

These are, in general terms, the main theoretical positions put forward by Koch and 

Ullmann in 1985. The first computational models of saliency appeared much later, in the 

mid-1990s (Baluja & Pomerleau, 1994; Itti, Koch, & Niebur, 1998; Milanese, 1993; Tsotsos et 

al., 1995); as they improved, they began to gain practical significance. Let us now consider 

the main results obtained within the framework of various approaches to modeling.

Discussion 
Computational saliency Models
Approaches to saliency modeling can be broadly divided into traditional and neural 

network approaches. Thanks to the use of modern neural network architectures, 

primarily convolutional ones, all records for model training quality have been broken in 

recent years (Borji, 2019). The success of neural network models is facilitated not least by 

the increase in the volume of publicly available data from eye-tracking studies and the 

emergence of standardized and relatively easy-to-use neural network modeling tools. Let 

us consider these approaches in more detail, starting with the traditional ones that have 

had the greatest impact on the subsequent development of the field.
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The model developed by Laurent Itti, Christoph Koch, and Ernst Niebur served as 

the basis for many subsequent models; it also serves as a benchmark for comparing 

them (Borji & Itti, 2013). The model analyzes intensity, color, and orientation. In the first 

stage, the input color  image 640x480 in each of the corresponding channels 

is represented as a Gaussian pyramid (9 scales from 1 :1 to 1 :256 with an octave step). 

The intensity representation of the image  is used to create the 

pyramid , where  is the scale. It is also used to normalize the primary 

color channels , and , which is used to separate color hue from intensity. Since 

hue changes are not perceived at low brightness, normalization is applied only where  

is greater than  of its maximum across the entire image; in other locations, pixel 

values are set to zero.

Local feature maps are calculated using a set of linear central-peripheral operators, 

which are implemented in the model as a point-by-point difference between fine high- 

frequency and coarse low-frequency scale representations (denoted by ): the center is 

represented by pixels at scale , and the neighborhood is the corresponding 

pixels at scale  where . Six intensity maps are calculated as

Based on the primary normalized color channels, four new broadband channels are 

created:

•	 red: 

•	 green: 

•	 blue: 

•	 yellow: .

Negative values are set to zero. Pyramids are created from these channels , , 

 and  .

Sets of maps for color channels are created similarly to intensity maps, while 

channels with double color opposition are modeled (Hohlova, 2012; S. Engel et al., 1997): 

the centers of the receptive fields of neurons are excited by one color (e.g., red) and 

inhibited by another, while the opposite occurs at the periphery. Maps modeling dual 

color opposition in the primary visual cortex of humans (green/red ( ) and blue/

yellow ( )), are calculated using the formulas
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Local orientation information is extracted from  using an oriented Gabor pyramid 

, where . Orientation feature maps  

encode local differences in orientation between the center and the periphery, represented 

by different scales:

Thus, a total of  feature maps are created:  for intensity,  for color, and  

for orientation.

Combining feature maps into conspicuity and saliency maps is problematic: different 

modalities have different dynamic ranges and use different feature extraction mechanisms, 

making them difficult to compare. In addition, salient objects represented on only a few 

feature maps may be masked by noise or less salient objects represented on a larger 

number of maps. In the absence of a mechanism in the model that provides top-down 

control, the authors propose using the map normalization operator , which would 

increase the global role of those that contain a small number of strong activity peaks and 

would lower it for those that contain a large number of peaks of comparable strength. 

The application of , involves:

1.	 bringing map values to a single fixed range , to eliminate modality-specific 

amplitude differences;

2.	 searching for the global maximum of the map  and calculating the average  of 

all its local maxima;

3.	 global multiplication of the map by .
 The authors use the model of cortical mechanisms of lateral inhibition to explain 

how the operator works (Cannon & Fullenkamp, 1996): when  is sufficient, the 

most active location stands out sharply, and the map becomes more important; if the 

difference is small, the map contains nothing unique and turns out to be insignificant.

Feature maps are combined into three saliency maps ,  and ,  for intensity, color, 

and orientation, respectively. Saliency maps are created by summing all the maps of the 

Gaussian pyramid after bringing them to a single scale with ; this operation is 

referred to by the authors as :
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The process of calculating   involves creating four intermediate maps by combining six 

feature maps for each , and then combining them into a single saliency map.

The authors explain the creation of three independent channels ,  and , and 

their separate normalization by the hypothesis that similar features compete strongly for 

saliency, while different modalities contribute independently to the saliency map. The 

three saliency maps are normalized and summed into the final input  of the  

saliency map:

At each moment in time, the maximum activation of the SM map determines the 

most salient location in the image on which attention should be focused. To determine 

the point to which the model should switch next, one could simply select the most active 

location on the map. However, based on considerations of biological plausibility, the 

authors model the saliency map as a two-dimensional layer of leaky integrate-and-fire 

neurons on the . The model of such neurons includes a single "capacitor" that 

accumulates charge from the synaptic input, leakage conductance, and threshold voltage. 

When the threshold is reached, an "action potential" (prototypical spike) is generated, 

and the charge of the "capacitor" is reset to zero. The maximum activation of the map 

enters a biologically plausible two-dimensional WTA neural network, in which synaptic 

interactions between elements ensure that only the most active location remains, while 

all others are suppressed (here the authors refer us, among other things, to the previously 

discussed work (Koch & Ullman, 1985).

Neurons in the SM receive excitatory input from  and are independent of each 

other; therefore, their potential in more salient locations increases faster (these neurons 

are used as pure integrators and do not fire continuously). Each SM neuron excites its 
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corresponding WTA neuron. All WTA neurons also change their state independently of 

each other until one ("winner") is the first to reach the threshold and fire. This triggers 

three simultaneous mechanisms:

1.	 the focus of attention shifts to the location of the winning neuron;

2.	 global inhibition is triggered and completely suppresses (resets) all WTA neurons;

3.	 In SM, in the area corresponding to the position and size of the new focus of attention, 

local inhibition is temporarily activated; this not only leads to dynamic shifts in focus, 

allowing the next most salient location to subsequently become the winner, but also 

prevents the focus of attention from immediately returning to the previously visited 

location. 

Such "inhibition of attention return" has been described in studies of human vision 

(see, e.g., (Utochkin & Falikman, 2006)). In addition, Koch and Ullman's "proximity 

preference" rule is modeled (Koch & Ullman, 1985): to slightly reorient the model toward 

finding the next salient location close to the previously visited one, in the , in the 

area corresponding to the position and size of the new focus of attention, local inhibition 

is temporarily activated; this not only leads to dynamic shifts in focus, allowing the next 

most salient location to subsequently become the winner, but also prevents the focus of 

attention from immediately returning to the previously visited location: in order to slightly 

reorient the model to search for the next salient location close to the previously visited 

one, in SM, in the immediate vicinity of the current focus of attention, a small excitation 

is temporarily activated.

Since this saliency model does not take into account top-down "top-down" controle, 

the focus of attention is a simple disk, the radius which is constant and equal to 

, where  are the height and width of the input image, respectively. 

´The time constants, conductivity values, and thresholds of the simulated neurons were 

chosen so that the focus shifted from one salient location to another in approximately 

30–70 ms, and the previously visited location was suppressed for approximately 500–900 

ms, which corresponds to psychophysical data (Posner & Cohen, 1984). The difference in 

the relative magnitude of these delays was sufficient to ensure complete scanning of the 

image and prevent looping on a limited number of locations. ´All tuning parameters are 

fixed in the author's implementation of the model in C++, and with them, the system 

demonstrates temporal stability on all test images. A generalized diagram of the model is 

shown in Fig. 3.
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Figure 3 
General diagram of the saliency model by L. Itti, K. Koch, and E. Niebur. Adapted from (Itti et al., 
1998).

The review by Ali Borji and Laurent Itti (Borji &amp; Itti, 2013), which essentially 

summarizes the development of saliency modeling up to the moment of widespread 

interest in deep learning technologies, covers more than fifty models published between 

1998 and early 2012. The authors analyze 52 saliency models that primarily consider 

ascending attention, although this analysis does not include developments known to 

them (Baluja & Pomerleau, 1994; Milanese, 1993; Tsotsos et al., 1995) presented before 

1998, i.e., before the publication of "the first complete implementation and verification 

of the Koch and Ullmann model proposed by Itti et al." (Borji & Itti, 2013, p. 186). The 

review also analyzes works presenting more generalized models of attention with top-

down control–there are 11 of them, two of which were proposed before 1998 (McCallum, 

1996; Rao, Zelinsky, Hayhoe, & Ballard, 2002). It probably makes no sense to list all the 

models considered here; however, the theoretical generalizations made by the authors 

in the course of their analysis, a summary of which is presented below, are particularly 

interesting. The authors highlight the following properties of the models that are 

important for categorizing and understanding their features:

1.	 bottom-up and top-down control. Models can represent predominantly ascending 

attention control factors based on certain characteristics of the visual scene, or 
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descending factors (knowledge, expectations, reinforcement, current goals, etc.), or take 

both into account. At the same time, they differ in:

–	 the features used. Both individual low-level features (color, orientation, etc.) and 

fairly complex object properties can be taken into account. In cases where the model 

includes top-down control, a mechanism for adjusting feature detectors can be used. 

Models that process features are closely related to purely computational methods of 

object detection; cognitive modeling and computer vision enrich each other;

–	 the degree of scene context consideration. It is known that with very short 

exposures (80 ms or less), the observer is able to grasp the main content ("gist") of the scene. 

Its representation does not contain a large number of details of the objects presented in it, 

but it can provide sufficient information for coarse discrimination (e.g., inside or outside 

a room). The influence of context is also evident in the speed of object detection and in 

the characteristics of eye movements. Traditional computational models that take into 

account the main content of a scene typically use filtering (including biologically based 

methods such as central-peripheral filtering and Gabor filters) or spectral methods to 

extract features, the dimensionality of which is then reduced using principal component 

analysis (PCA) independent component analysis (ICA), or cluster analysis. The result is 

a vector of values ("gist vector") that characterizes the scene. The authors of the review 

note that at the time of writing, the popularity of this approach in computer vision was 

growing.

–	 taking into account the requirements of the task. The task greatly influences the 

distribution of attention, and scenes can be interpreted based on the needs that arise to 

meet the task requirements. When solving complex tasks, there is a strong connection 

between visual cognition and eye movements. Thus, during visual control, most fixations 

are directed at areas relevant to the task. Eye movements often reveal the solution 

algorithm used by the subject. In particular, in the block copying task (Ballard's paradigm, 

for more details, see (Ballard, Hayhoe, & Pelz, 1995; Ballard, Hayhoe, Pook, & Rao, 1997; 

Hayhoe & Ballard, 2005)), which involves the test subject reproducing a structure from 

elementary "building" blocks of different colors, the test subjects first selected the target 

block in the original structure, confirming its position, and then fixed their gaze on the 

workspace to place the corresponding block in the correct place. The authors also 

provide a list of studies in which activities in natural conditions were investigated in a 

similar manner.

The authors of the review note that ascending and descending attention combine to 

control our attention, providing several options for implementing the rules for integrating 

these processes.

2.	 only space or space and time. Models can take into account the movement of objects 

and predict attention shifts between objects in a static or dynamic scene;
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3.	 overt and covert attention. Models can describe both overt and covert attention, but 

the degree to which they account for covert attention is difficult to assess due to the 

complexity of measuring it;

4.	 objects or spatial locations. Given that there are grounds for distinguishing between 

feature-based attention and object-based attention, models may give preference to one 

of these types;

5.	 features used in the model. Many models use traditional features used in integration 

theory; however, there are many others, such as mathematically constructed (wavelets, 

PCA, ICA), geometric, etc.;

6.	 stimuli and task type. Since real empirical data is needed to test the model, the 

authors identify two grounds for distinguishing models based on the stimuli used in data 

collection: static/dynamic and artificial/natural. The type of task solved by the observer is 

also important. It can be free viewing, visual search, or an interactive task;

7.	 metrics used for evaluation. When evaluating a model, its prediction is usually 

compared with an empirically obtained result (ground truth); often, various versions of 

gaze fixation maps are used as such a result. Depending on the map and the type of result 

produced by the model (fixation points, two-dimensional probability distribution, etc.), 

several modifications of the area under the curve, normalized saliency of the gaze path, 

Kulback-Leibler metric, Pearson's correlation coefficient, etc. can be used. A detailed 

discussion of various metrics can be found in a more recent work (Bylinskii, Judd, Oliva, 

Torralba, & Durand, 2017);

8.	 eye movement datasets used. At the time of the publication of the review by Itti and 

Borji, eye movement data recorded while viewing static images (Bruce & Tsotsos, 2005; 

Judd, Ehinger, Durand, & Torralba, 2009) and videos (Marat et al., 2009) were freely 

available. Many authors used their own data to train and test models, which eventually 

became available to other researchers;

9.	 Models can be classified based on how saliency is calculated. For example, a model 

can be based on neuron-like calculations, or it can use formal high-level approaches. 

The authors note that some models fall into several categories at once, but nevertheless 

use a simple single-level classification in the future:

–	 cognitive models. Almost all models of attention were created under the influence 

of cognitive concepts. However, the authors include in this class those models that are 

more closely related to psychology or neurophysiology; the author of this review believes 

that this may be a matter of substantive connection, since the algorithms used in these 

models intersect in one way or another with psychological and/or neurophysiological 

concepts;

–	 Bayesian models. "In these models, prior knowledge (e.g., the context of the scene 

or its gist) and sensory information (e.g., target features) are probabilistically combined 
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according to Bayes' rule (e.g., to detect an object of interest)" (Borji & Itti, 2013, p. 194). 

These models are capable of learning from data and generalizing various factors;

–	 models based on decision-making theory. These models are based on the idea 

that visual attention should be managed in an optimal way in the context of the current 

task; they can be based on very different algorithms (both biologically based and purely 

computational);

–	 models based on information theory. These models are based on the assumption 

that salient areas are the most informative in terms of the amount of information they 

contain. Computationally, these models are based on comparing various statistical 

estimates of image regions (entropy, distribution parameters, etc.);

–	 Graphical probability models. "Graphical models can be viewed as a generalized 

version of Bayesian models" (Borji & Itti, 2013, p. 197). Such models use graphs that 

represent the structure of conditional independence of random variables; eye movements 

are viewed as a time series. Due to the existence of hidden variables that influence the 

formation of eye movements, solutions such as hidden Markov models (HMM), dynamic 

Bayesian networks (DBN), and conditional random fields (CRF);

–	 models based on spectral analysis. This group of models is based on the analysis 

of image properties, often with scaling, represented in the frequency domain (amplitude 

and phase spectrum);

–	 models based on pattern classification. These models use machine learning 

methods such as support vector machines (SVM), regression, etc. Training is carried out 

on specially labeled data (for example, divided into areas, each of which is marked as 

salient or non-salient);

–	 Other models. A fairly extensive and highly blurred "class" of models characterized 

by originality and based on a wide variety of computational solutions.

Based on these properties, the authors of the review have compiled an extremely 

useful summary table of the models they have considered (Borji & Itti, 2013, p. 201), 

allowing the reader to quickly navigate the vast array of rather complex developments and 

find the necessary bibliographic information. Each of the listed properties is represented 

by a column in the table, with the models known to the authors listed in rows; the cells 

contain symbols that indicate whether a model has a particular property. Thus, using 

the table, one can quickly determine that the classical model of Itti, Koch, and Niebur 

(Itti et al., 1998) discussed earlier is ascending, spatial, rather than spatiotemporal, static; 

dealing with natural stimuli and the task of free viewing, based on spatial locations rather 

than objects, taking into account only simple features (color, brightness, orientation), 

cognitive; data for training the model were not used.
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Neural network models of saliency
Moving on to the description of saliency models based on deep learning methods, 

we cannot fail to mention the existence of a remarkable review published by A. Borji 

in 2021 (Borji, 2021), but available as a preprint since 2019 (Borji, 2019). I would like 

to recommend this document to interested readers as a valuable source of reference 

information on neural network models and datasets created over the past decade, on the 

metrics used, and on methods for evaluating model performance. Given the existence of 

this high-quality review, the author of this text (D. Ya.) sets himself two fairly modest tasks: 

to acquaint the reader with the history and logic of the development of the field using the 

example of the work of one of the most successful research groups working in the field of 

saliency modeling; to examine the models created after the publication of Borji's review 

and attempt to identify and summarize their characteristic features.

The work of A. Krizhevsky, I. Sutskever, and J. E. Hinton (Krizhevsky, Sutskever, & 

Hinton, 2012) sparked another revolution in artificial intelligence research, reviving 

widespread interest in deep learning neural networks, which had faded somewhat due 

to the rapid development of machine learning approaches such as kernel methods and 

decision trees at the turn of the century (see, e.g., (Chollet, 2023)). The model, later named 

AlexNET, won a decisive victory at the annual ImageNet competition in 2012, achieving 

a record performance of 83% in the classification of 1,000 object categories. The use 

of the then-novel multilayer convolutional architecture and graphics processing units 

allowed researchers to achieve impressive results in the following years, including in the 

modeling of visual saliency.

As early as 2014, a group of researchers from the University of Tübingen (Bethge Lab) 

developed the DeepGaze I model (Matthias Kümmerer, Theis, & Bethge, 2015), which 

used weights from the neural network of A. Krizhevsky et al. 2015). The use of transfer 

learning technology allowed the authors to achieve a significant increase in performance 

compared to previously created models. Thus, the correlation between predictions 

and tracking data on the MIT300 dataset is 0.6144. The model used the outputs of the 

convolutional layers of AlexNET, which were linearly combined with different weights. 

The resulting layer was filtered (convolution with a Gaussian kernel), then a weight matrix 

implementing a center bias correction was added to it elementwise. In this form, the 

result was fed to the softmax layer, at the output of which the distribution of fixation 

probabilities was formed. To stimulate sparsity, l1 regularization of weights was applied 

in the model.

In 2017, a new version of the model appeared, DeepGaze II (M. Kümmerer, Wallis, 

Gatys, & Bethge, 2017). It used the convolutional part of VGG-19 (Simonyan & Zisserman, 

2015) as its base; information was extracted from the conv5_1, relu5_1, relu5_2, conv5_3, 
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and relu5_4 layers. The trainable part was made more complex (4 convolutional layers 

1x1), but otherwise the model was similar to the previous one. The model demonstrated 

very high performance at the time: the correlation between the empirical MIT300 data 

and the forecast was 0.7703.

In parallel with it, the DeepGaze ICF model was created, in which, instead of the 

basic part in the form of network layers that were pre-trained to recognize objects, 

operations for extracting exclusively low-level features were used. Calculations were 

performed for brightness and two color difference components in five scales (Gaussian 

pyramid) for brightness and contrast, respectively; thus, 30 low-level feature maps were 

generated at the output. This model achieved better performance (correlation of 0.5876 

on MIT300) than all models that did not use features from neural networks pre-trained to 

recognize objects, which, according to the authors, makes it a reliable basis for assessing 

the usefulness of high-level features. Thanks to this model, the authors found that some 

fixations are much better predicted by low-level features.

The DeepGaze IIE model (Linardos, Kümmerer, Press, & Bethge, 2021), introduced 

in 2021, is an improved version of DeepGaze II. The trainable part of the network has 

been made deeper, and ReLU activations have been replaced with norm and softplus. 

Training was performed on the Salicon and then MIT1003 datasets. The main change 

concerned the base network: the original VGG-19 could be replaced with other deep 

networks trained on the ImageNet dataset (ResNet50 (He, Zhang, Ren, &amp; Sun, 2015), 

EfficientNet85 (Tan & Le, 2020), etc.). According to MIT/Tübingen Saliency Benchmark ), 

the highest correlation between the prediction and empirical fixation maps was 0.8242; 

in fact, this is the best model tested to date and presented on the website. However, the 

authors continue to create new versions of the model.

In 2022, DeepGaze III was introduced (Matthias Kümmerer, Bethge, & Wallis, 2022; 

Matthias Kümmerer, Wallis, & Bethge, 2022), which includes a spatial prediction module 

that takes into account the influence of scene content on fixation location, and a scan 

history module that identifies the influence of earlier fixations and, consequently, the 

dynamics of gaze trajectory. The first module broadly replicates previously developed 

spatial models; the second uses information about four or fewer previous fixations to 

predict the current fixation, which is represented as maps of three features: distance to 

the current fixation, as well as x and y displacements. Information about previous fixations 

made by the subject is processed in this module and then combined with the spatial 

map in the fixation selection network. The final prediction is blurred, combined with 

the central offset correction weights, and converted into a probability distribution using 

softmax. Judging by the AUC= 0.906 and NSS= 2.957 values reported by the authors, 

obtained on MIT300 (the correlation value is not given), the model demonstrates the 

highest performance of those previously presented, but data on it on the MIT/Tübingen 
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Saliency Benchmark is not yet available. The approach used by the authors allows us to 

investigate the influence on perceptual saliency not only of the physical properties of the 

image and the task, but also of previously produced fixations.

The idea of processing features extracted from layers of a convolutional neural 

network trained to recognize objects is also used by the authors of the TranSalNet 

model (Lou, Lin, Marshall, Saupe, & Liu, 2022). When developing the model, they set 

themselves not only the task of obtaining maximum results, but also sought to bring the 

architecture of the artificial network closer to the human perceptual system. First, the 

image is fed into a convolutional encoder. To obtain multi-scale representations, three 

sets of feature maps with different spatial dimensions are extracted from the encoder. 

Due to the inductive biases inherent in convolutional architectures, the extracted image 

representations do not contain contextual information at a large scale, which potentially 

makes the saliency model less human-like. The authors draw the reader's attention 

to the fact that the human visual system is capable of capturing both local and global 

information. The authors stress that the saliency model is not as human-like as it could 

be; they emphasize that the human visual system is capable of capturing both local and 

global information. Therefore, to obtain a prediction that is more relevant from the point 

of view of perception, these feature maps are passed through three encoder transformers 

(Vaswani et al., 2023), which allows us to obtain global feature maps with improved context 

information transfer. The encoder transformers contain a multi-head self-attention layer 

and a multilayer perceptron. Then, a convolutional decoder combines the feature maps 

to construct a saliency prediction. The model demonstrates performance comparable to 

DeepGaze: when using DenseNet-161 (Huang, Liu, Maaten, &amp; Weinberger, 2018) as 

the base network, the correlation between the prediction and the MIT300 data is 0.8070; 

with ResNet-50, the correlation decreases slightly (0.7991).

Despite their significant capabilities for forming representations of image elements, 

feedforward convolutional neural networks can ignore their internal connections and 

lack the potential advantages provided by the use of feedback in visual tasks. This also 

applies to saliency modeling. Given this circumstance, the authors of the SalFBNet model 

(Ding, İmamoğlu, Caglayan, Murakawa, & Nakamura, 2022) propose a convolutional 

architecture with feedback and recursion. The proposed model can form multiple 

contextual representations using a recursive path from higher-level feature blocks to 

lower-level layers. To address the problem of training data scarcity, the authors use a 

special approach to knowledge transfer, creating a large-scale training set using pre-

trained saliency models listed on the MIT/Tübingen Saliency Benchmark website. First, 

they train the proposed model on the artificial data obtained in this way, then retrain 

it on real gaze fixations. In addition, to facilitate training their feedback model, the 

authors propose a new loss function, which they call sFNE (selective fixation and non-
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fixation error). Numerous experimental results show that SalFBNet with fewer parameters 

achieves competitive results in publicly available saliency model tests, which indicates 

the effectiveness of both the feedback model itself and the use of artificial data for pre-

training. SalFBNet ranks second in performance after DeepGaze IIE (correlation with 

MIT300 data 0.8141).

The Saliency TRansformer (SalTR) model (Dahou Djilali, McGuinness, & O'Connor, 

2024) is based on a new approach to predicting saliency in images, using parallel 

decoding in transformer networks to train the network exclusively on fixation maps. To 

overcome the optimization challenges for discrete maps, models are typically trained on 

continuous maps. The developers of SalTR attempt to build an experimental computing 

system that generates saliency datasets. The authors' approach treats saliency estimation 

as a direct prediction problem using a global loss function that predicts individual 

fixations through bilateral matching and a transformer-encoder-decoder architecture, 

with a ResNet50 base network at the input. Using a fixed set of learned fixation queries, 

cross-attention processes image feature information to directly infer fixation points, 

which distinguishes this development from other modern models. The authors note 

that their approach achieves estimates comparable to other modern approaches in the 

Salicon and MIT300 tests. Thus, the implementation of SalTR-Small provides correlations 

between predictions and original samples at the level of 0 .84 and 0 .7 for Salicon and 

MIT300, respectively, while SalTR- Base provides correlations of 0 .87 and 0.75. The 

use of deformable convolutions in the models increases the similarity to 0.86 and 0.76 

(small) and 0.89 and 0.8 (base), respectively. Thus, SalTR is indeed one of the best modern 

models of visual saliency.

Modeling of visual saliency is also developing in the direction on video stream 

processing. In their work (Droste, Jiao, & Noble, 2020), the authors point out that saliency 

modeling for images and videos is considered in the current literature on computer vision 

as two independent tasks. And while modeling for images is a well-developed problem, 

and progress in this area is slowing down, as seen in the SALICON and MIT300 benchmarks, 

saliency models for video have recently shown rapid growth in the DHF1K benchmark 

(Wang et al., 2021). The authors ask whether it is possible to approach saliency modeling 

for images and videos using a single model with mutual benefits. In their opinion, the key 

prospects for joint modeling are provided by the application of domain shift (adaptation 

of an AI system to use in a new area and/or applying to new data) both between saliency 

data for images and for videos, and between different sets of video data. In addition to 

an improved algorithm for creating trained Gaussian priors (correction for gaze shift to 

the center), four new domain adaptation methods are proposed to solve this problem: 

domain-adaptive prior values, domain-adaptive fusion, domain-adaptive smoothing, and 

recurrent network bypass. These methods are integrated into a "simple and lightweight" 
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(Droste et al., 2020, p. 1) UNISAL network with an "encoder-recurrent block-decoder" 

architecture, trained on saliency data for both images and videos. The training results 

are evaluated on the DHF1K, Hollywood-2, and UCF-Sports video datasets, as well as 

on the SALICON and MIT300 static datasets. With the same set of parameters, UNISAL 

achieves the highest performance at the time of publication on all saliency datasets for 

video and is on par with the best models in tests on image data (correlation with MIT300 

data is 0.7851); Compared to all competing models using deep learning, the execution 

time is reduced by 5–20 times, and the model itself is smaller. The authors also conduct 

retrospective analysis and ablation studies (studies of the role of an AI system component 

by disabling it), which confirm the importance of domain shift in modeling.

Characteristics of Modern Deep Learning Saliency Models

1.	 	 Modular neural network architectures with replaceable modules.

2.	 	 Knowledge transfer: leveraging pre-trained networks and artificial datasets for 

pre-training.

3.	 	 Domain adaptation: extending models across domains, e.g., images and videos.

4.	 	 Beyond classical convolution: use of recurrent paths, self-attention, feedback 

loops, and transformers.

5.	 	 Modular manipulation for ablation studies, enabling analysis of each component’s 

contribution.

Conclusion

A considerable amount of time passed between the publication of Koch and Ullmann’s 

seminal article (1985) and the practical testing and implementation of their ideas. Early 

research focused primarily on the algorithm for forming the initial saliency map, while 

many details of its construction were only briefly mentioned in the original work. The 

first, traditional stage of saliency model development was characterized by a wide variety 

of computational methods and approaches. Some of these solutions were well-aligned 

with psychological and neurophysiological data. At this stage, visual saliency models were 

largely “transparent” in terms of internal structure, making them especially valuable for 

comparison with theoretical models from cognitive science. With the rise of machine 

learning methods–such as Bayesian classifiers and support vector machines–particularly 

in the first decade of the 21st century, some conventional models began to resemble 

“black boxes.” This trend intensified dramatically after the 2012 revolution in neural network 

technology, though it also brought impressive gains in performance. There is hope 

that, as tools for analyzing the specific algorithms learned by neural networks improve, 

the contents of these “black boxes” will become more interpretable. Optimism is also 

supported by the growing volume of publicly available data for training saliency models, 

as well as a clear understanding in the research community of the importance of task type 
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(e.g., free viewing, visual search) and task characteristics when collecting such data.

As effective computational approaches have matured, the literature has increasingly 

explored practical applications of saliency models, including computer vision (Medioni & 

Mordohai, 2005), engineering psychology and usability studies (Sun et al., 2019), medical 

image analysis (Arun et al., 2020; Jampani et al., 2012), and video compression (Gitman 

et al., 2014; Lyudvichenko et al., 2017). The first commercial solutions are also emerging. 

Thus, the modeling of visual saliency has now acquired significant practical relevance, 

enabling both the simulation of attention for technical purposes and the prediction of 

attentional shifts in humans.
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