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Abstract
Introduction. Recently, machine learning methods, which are core components of 

artificial intelligence, have gained popularity in analyzing neurophysiological data. 

Functional near-infrared spectroscopy (fNIRS) is actively used to study neurocognitive 

mechanisms. This technology for recording hemodynamic data has a number of 

advantages, including spatial resolution, non-invasiveness, and the feasibility to conduct 

studies in natural settings, which has made the technology popular among researchers. 

Theoretical justification. The analysis of fNIRS results relies on the sequence and 

selected methods for preliminary processing of raw data, as well as on the classification 

models employed. This review evaluates various preprocessing methods and examines 

the approaches to classifying fNIRS data. An essential aspect of preprocessing involves 

detecting and eliminating physiological artifacts from raw data, utilizing algorithms 

such as filtering, signal whitening, principal component analysis (PCA) and independent 

component analysis (ICA), short-channels removal. Methods such as wavelet filtering, 
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spline interpolation, and Kalman filtering are employed to address motion artifacts. 

Discussion. The review aims to provide an in-depth exploration of machine learning 

methods, specifically recurrent neural networks (RNN) and convolutional neural 

networks (CNN), which have been used in various studies for analyzing fNIRS data. The 

review highlights that leveraging deep learning neural networks can streamline signal 

preprocessing while achieving higher accuracy compared to traditional approaches in 

processing neurocognitive data.
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Introduction
Currently, there are several ways to register brain activation data in neurocognitive research. 

These methods are typically divided into invasive (which involves directly registering data 

from the cerebral cortex or its structures by inserting electrodes into brain tissue) and 

non-invasive (which involves registering data from the surface of the scalp). Non-invasive 

methods used to obtain brain activation signals include electroencephalography (EEG) 

(Light et al., 2010); magnetoencephalography (MEG) (Cohen, 1968); functional magnetic 

resonance imaging (fMRI) (Seliverstov, Seliverstova, Konovalov, Kotenkova, Illarioshkin, 

2014); functional near-infrared spectroscopy (fNIRS) (Scholkmann et al., 2014; Pinti et al., 

2018; Quaresima & Ferrari, 2019).

Functional NIRS register changes in the blood flow of local capillary networks, 

which are induced by the activation of brain neurons. This method uses near-infrared 

signals in the cerebral cortex to detect changes in hemoglobin concentration. There 
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are two types of hemoglobin chromophore: oxyhemoglobin (HbO2) – oxygen-

saturated, and deoxyhemoglobin (HHb), which is oxygen-free. FNIRS is a modern, 

non-invasive technology for measuring changes in concentrations of oxyhemoglobin, 

deoxyhemoglobin and total hemoglobin (Sitnikova & Malykh, 2021). FNIRS spectroscopy 

technology is based on two main principles: human tissue is relatively transparent to near-

infrared light; hemoglobin is the primary absorbent of light in the near-infrared range. In 

this range, oxyhemoglobin and deoxyhemoglobin exhibit oxygen-dependent absorption, 

that varies across different wavelengths (Chen et al., 2020).

Recently, the use of machine learning technologies in the psychophysiology domain 

has gained popularity. Specifically, machine learning methods are actively employed 

to analyze fNIRS data in both neurocognitive research and for applications in brain-

computer interfaces.

Theoretical background

Preprocessing of neurophysiological data using machine learning 
technologies 

There is a different set of parameters and methods for signal cleaning and conversion, 

depending on the type of research and the machine learning model being used. However, 

there are several uniform steps in the signal preprocessing, which include converting the 

raw signal from different wavelength into optical density, and then into the concentration 

of oxy- and deoxy-hemoglobin. The conversion to total hemoglobin is optional. Multiple 

sources of signal interference can complicate signal interpretation and pose a significant 

challenge. 

The main sources of noise may include head movements, changes in the optode 

(source and detector) scalp coupling index (SCI index), and changes in blood flow 

unrelated to neural activity. For example, the heart rate can be recorded by fNIRS and 

may be present in the neurophysiological signal. This occurs because near-infrared 

waves first pass through the meninges, skull, and scalp, and physiological changes in 

these tissues can cause changes in light absorption between source and detector that 

are not associated with functional changes in neural activity (Osharina, Ponchel, Aarabi, 

Grebe & Wallois, 2010). Overall, sources of physiological noise include heart rate, blood 

pressure fluctuations, respiratory rate, and scalp blood flow. Physiological noise can be 

removed using several techniques, including digital filtering, pre-whitening, and adaptive 

filtering. Techniques such as principal component analysis (PCA) and independent 

component analysis (ICA) can also be used to remove physiological noise from fNIRS 

signals. Additionally, registering short-wavelength channels has become increasingly 

common, allowing for the measurement of activation on the surface of the head (Brigadoi 

& Cooper, 2015). Each source of biological noise is characterized by its own frequency 
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range in the recorded signal (Cordes et al., 2001; Blanco, Molnar & Caballero-Gaudes, 

2018). Therefore, digital filtering can reduce and/or completely eliminate the influence 

of noise sources that occur in frequency ranges different from the frequency ranges of 

the brain activity signal evoked by the task (Cordes et al., 2001; Liu, Ayaz, & Shewokis, 

2017). However, fluctuations in blood pressure (0.08–0.12 Hz) and heart rate at rest  

(1–1.5 Hz) tend to overlap with the frequency range of the task-related brain activation 

signal (Huppert, 2016). 

In addition to signal filtering, physiological noise removal is available through signal 

pre-whitening (Blanco et al., 2018). Signal whitening is used to remove autocorrelated 

signals such as heart rate by decorrelating task-irrelevant physiological signals (Barker, 

Aarabi, & Huppert, 2013). Some researchers (Blanco et al., 2018; Barker, Aarabi, & Huppert, 

2013) have determined pre-whitening filter coefficients using an iterative autoregressive 

model to reduce residual error in task-evoked activity estimated from a general linear 

model analysis (GLM) (Luke et al., 2021; Yücel et al., 2021). It is worth noting that the pre-

whitening is sensitive to motion artifacts (Blanco et al., 2018); therefore, motion artifacts 

must be removed from the signal before applying this procedure.

Another source of artefacts in fNIRS signal is global blood flow in the scalp. Principal 

component analysis (PCA) is used to remove such artefacts associated with scalp blood 

flow (Zhang, Noah, & Hirsch, 2016). The effectiveness of using PCA is justified in case 

of one dominant source of variation. If there are several sources that significantly can 

influence the overall signal variation, then PCA may not provide the desired effect (Zhang, 

Noah, & Hirsch, 2016). Another option for removing the global blood flow component 

from the signal can be the use of  ICA (Hyvärinen & Oja, 2000). For example, ICA was 

used to eliminate global blood flow interference during Gate experiments by exploiting 

temporal coherence between channels to identify large signal components with a high 

coefficient of spatial homogeneity (Kohno et al., 2007).

Improvements in fNIRS technology have led to the development of short wavelength 

channels (~8 mm source to detector distance) that are used to measure and remove 

scalp blood flow data from analysis (Gagnon, Yücel, Boas & Cooper, 2014; Funane et al., 

2015; Nguyen, Yoo, Bhutta & Hong, 2018). Short distances prevent light from penetrating 

the cortical surface, limiting blood flow measurements in the scalp. Thus, adding short-

wave channels as a regressor to the fNIRS model allows to reduce the noise from the 

blood flow of the scalp.

Another typical source of noise in the fNIRS signal is motion artifacts that occur 

during conversation or facial, head, and/or upper body movements (Izzetoglu, Chitrapu, 

Bunce, & Onaral, 2010; Jahani, Setarehdan, Boas, & Yücel, 2018). Motion can cause the 

optode shift, resulting in sharp high-frequency peaks, slow-wave drifts, or a shift in the 

baseline of the fNIRS signal (Jahani et al., 2018). To remove motion artifacts, methods 

such as wavelet filtering, spline interpolation, and Kalman filtering are used. Specifically, 

wavelet-based methods divide the fNIRS signal into wavelet coefficients and remove 
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those that fall outside a predefined distribution (Molavi & Dumont, 2012; Robertson, 

Douglas, & Meintjes, 2010). Spline interpolation methods model motion artifacts as a 

series of spline functions and subtract them from the data, achieving significant error 

reduction (Scholkmann, Spichtig, Muehlemann, & Wolf, 2010). Thus, the authors (Jahani 

et al., 2018) showed that combining spline interpolation with a Savitzky-Golay filter can 

correct baseline shifts and high-frequency peaks without removing additional artifacts 

from the signal (Jahani et al., 2018).

Obtaining features and augmenting input data before analysis using 
artificial intelligence methods

After the preprocessing of fNIRS signal, time series of oxyhemoglobin, deoxyhemoglobin and 

the total change in hemoglobin are formed. Each research team decides which combination 

of signals to use for further analysis. Figure 1 presents various options for transforming oxy- 

and deoxy-hemoglobin in time series before analyzing using mathematical methods or 

training machine learning models (Eastmond, Subedi & Intes, 2022).

Figure 1
Options for extracting features from signal samples (Eastmond, Subedi & Intes, 2022)

Researchers employ the following approaches to transform the signal before using 

it in the models: 

1. Discrete probability distribution of concentration changes and extraction of 

statistical features (such as mean, slope, variance, skewness, kurtosis, maximum 

and others). Statistical characteristics can describe the time series of oxy- and 

deoxy-hemoglobin and incorporate the distinctive features of the series. The 

drawback of this this approach is that researchers themselves determine the 

available features that the model will analyze. This approach is valid when using 
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machine learning methods such as random forests or support vector machines. 

However, for neural networks, this approach is not valid, as in this case, the 

neural network can’t independently model original features from the raw signal. 

2. In another approach, fNIRS data in the form of a spatial map or raw time series 

is used by machine learning model (Tanveer, Khan, Qureshi, Naseer & Hong, 

2019; Ghonchi et al., 2020a; Saadati, Nelson & Ayaz, 2019). In some research, 

data segments are converted to the form of Gramian angle fields (Gao et al., 

2020) or spectrogram maps (Chhabra, Shajil & Venkatasubramanian, 2020). This 

approach allows machine learning methods, particularly deep learning neural 

networks, to independently extract features from the input signal. In this case, 

nonlinear features may be formed that are not understandable to researchers.

Approaches based on manual feature extraction and artifact removal are a challenge 

for creating a real-time signal processing system, in particular brain-computer interfaces. 

Deep learning neural networks can solve this problem with a sufficient set of training data. 

At the same time, deep learning methods can be used both as independent classifiers 

and as a method for extracting features, which can be used subsequently in the classifier. 

This fact is due to the good parallelization of calculations in neural networks, as well as 

the ability of neural networks to study and extract unique feature maps. Thus, Tanveer 

et al. (2019) used deep learning neural networks to extract features that were used in a 

K-nearest neighbors’ classifier.  

Some researchers use raw data in the classifier. In these approaches, a neural 

network extracts feature maps, based on which classification layers recognize patterns 

of brain activity. In Rojas and colleagues (2020) research, raw fNIRS data was used as an 

input for a LSTM neural network, achieving a classification accuracy of 90.6%. In a study 

evaluating methods for motion artifact reduction (Kim, Lee, Dan, & Tak, 2022), the authors 

compared convolutional neural networks with wavelet denoising and autoregressive 

denoising. The results showed that the root mean square error is approximately two times 

lower compared to the best combination of wavelet and autoregressive noise reduction 

methods. The present research confirms that deep learning neural networks can classify 

brain activity patterns from raw, non-preprocessed data, bypassing the steps of data 

preprocessing and feature extraction. It is worth noting that this approach is actively 

developing and has demonstrated effectiveness on certain tasks. 

Neurophysiological studies are often characterized by small sample size. Deep 

learning neural networks require large amounts of data to be effectively applied. Large data 

samples enable machine learning methods to develop the ability to generalize classifiers 

across a broad data set. Consequently, researchers have recently become interested in 

generating large samples of fNIRS data (artificially generating fNIRS data), using neural 

networks.  using neural networks. The generated data is based on, but distinct from the 

original data set. Generative adversarial neural networks (GAN) are employed to address 

this issue. For example, in a study by Wickramaratne and Mahmud (2021), GANs were 
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utilized to expand the fNIRS data set. When training a CNN on the original data set, an 

accuracy of 80% was achieved. However, when the data set was expanded with synthetic 

data using GANs, the trained CNN classifier achieved an accuracy of 96.67%.  Similar 

results were observed in a study by Woo, Kang, and Hong (2020), where the addition of 

synthetic data increased the accuracy of the CNN classifier from 92% to 97%.

Artificial intelligence methods for analyzing fNIRS data

The fNIRS signal is converted into concentrations of oxyhemoglobin and deoxyhemoglobin, 
which can be considered as a multivariate time series. The numerous channels placed on 
the head's surface create multidimensionality. Modern neural network architectures aim 
to solve complex problems by minimizing the number of parameters required for training 
the network, utilizing innovative approaches to neural network structures. 

Despite recent advancements in the field of machine learning, some researchers still 
rely on multilayer perceptron (MLP) neural networks. For instance, in a review by Naseer, 
Qureshi, Noori, and Hong (2016), a comparative analysis of classification accuracy 
between MLP and other methods such as kNN, Naive Bayes, SVM, LDA, and QDA was 
carried out. In a mental workload task, the MLP classifier achieved an accuracy of 96%, 
slightly outperforming certain classifiers such as QDA, Naive Bayes, and SVM. However, 
predefined feature extraction approaches were used for the classifiers the study. In 
another study by Erdoğan and colleagues (2019), MLP with predefined fNIRS features was 
used to classify imagined movements, achieving an accuracy of 96.3% for distinguishing 
between tasks involving finger tapping and resting state.

Recurrent neural networks (RNNs) specialize in processing sequences, such as 
time series, where the chronological order of events is crucial. This is achieved by using 
loops, that transfer information from the current layer to the previous ones, allowing 
for the processing of current data alongside previously processed data. However, a 
limitation of these architectures is the short-term memory, which hinders their ability to 
effectively handle long sequences while maintaining connections between data points. 
To address this issue, the long short-term memory (LSTM) neural network architecture 
was introduced as a solution (Hochreiter & Schmidhuber, 1997; Graves, 2012; Van Houdt, 

Mosquera & Nápoles, 2020). 

Asgher et al. (2020) successfully tackled the challenge of mental workload analysis 

using LSTM, achieving an accuracy of 89.31%. Hamid et al. (2022) examined the distinction 

between walking and resting states with LSTM, achieving an accuracy of 78.97%. When 

compared to classical algorithms, the accuracy rates were as follows: kNN at 68.38%, 

SVM and LDA at 66.63% and 65.96%, respectively. In a study by Zhao, Li, Xu & Jin (2019), 

LSTM was employed to address a motor activity task, achieving an accuracy of 71.70%, 

surpassing the SVM accuracy of 66.6% on the same task. Wickramaratne & Mahmud 

(2020) demonstrated the efficacy of bidirectional LSTM architecture in classifying tasks 

like mental arithmetic, motor imagery, and resting state using fNIRS data, achieving a 

classification accuracy of 81.48%. 
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Another increasingly popular architecture neural networks for analyzing fNIRS data 

is convolutional neural networks (CNNs While CNNs are traditionally used for image 

processing, recent research has shown their effectiveness in handling time series data. 

Time series can be treated as one-dimensional vectors and convolved accordingly. For 

example, a multiscale convolutional neural network (MCNN) proposed by Cui, Chen, 

& Chen (2016) uses parallel convolution and pooling operations both on original time 

series and its transformations (scaling and smoothing of the series). The pooling results 

are concatenated into a single vector for further processing through fully connected 

and softmax layers (Fig. 2). This approach shows the possibilities to extract features from 

various transformations of the original time series.

Figure 2
MCNN neural network architecture (Cui, Chen & Chen, 2016)

Wang & Oates (2015) propose a method of using CNN to classify a time series by 

converting the original time series into an image to which CNN is applied. This approach 

involves constructing two matrices: the Gramian angular field (GAF), which retains 

all information about the series, except for the original boundaries of the values, and 

the Markov transition field (MTF), which preserves the original boundaries and values 

distribution. Figure 3 illustrates the structure and parameters of the neural network for 

processing GAF and MTF matrices.

The neural networks’ architectures depicted in Figures 2 and 3 allow for the 

consideration of various key aspects of time series in classification tasks. However, they 

require representation of time series in various forms to extract unique feature maps. 

Specifically, the GAF matrix converts a row of N length into a matrix of size NxN. The 

authors suggest that their approaches also be extended to multidimensional time series. 

The classification method based on multi-channel deep learning convolutional neural 

networks MC-DCNN, proposed in the research (Zheng, Liu, Chen, Ge & Zhao, 2014), 
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offers a solution to increasing the dimensionality of time series. Figure 4 presents the 

architecture of this network, where each channel (row) serves as an input for eight 

convolutions of size 1x5. Subsequently, an average pooling of size 1x2 is applied to each 

convolution result. The following layer applies four convolutions of size 1x5 and another 

average pooling of size 1x2 to the rows. The resulting vectors are then concatenated and 

used in the fully connected layer.

Figure 3
GAF-MTF-CNN architecture (Wang & Oates, 2015)

Figure 4
MC-DCNN network architecture (Zheng et al., 2014)
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In conclusion, convolutional neural networks provide effective options for analyzing 

time series data. Kwon & Im (2021) addressed the problem of classifying mental calculation 

of arithmetic problems using CNN, achieving an accuracy of 71.2%, surpassing the LDA 

classifier's accuracy of 65.74% under similar conditions. Wickramaratne and Mahmud 

(2021) also employed CNN for classifying mental arithmetic tasks, achieving an accuracy 

of 87.14%. Ho et al. (2019) utilized CNN for classifying mental workload tasks by converting 

signals to spectrograms and applying two-dimensional convolutions, resulting in an 

accuracy of 82.77%. In another study by Hakimi, Jodeiri, Mirbagheri & Setarehdan (2020), 

CNN was used to analyze mental states during stress and resting states, achieving an 

accuracy of 98.69%. Trakoolwilaiwan, Behboodi, Lee, Kim & Choi (2018) achieved an 

accuracy of 92.68% using CNN for motor movement classification tasks. Ortega & Faisal 

(2021) examined differences between left- and right-handed grasping tasks, reducing 

the dimensionality of time series data using PCA before applying CNN, resulting in an 

accuracy of 77%. The classification of motor movements becomes much more difficult if 

the movements are imaginary. When dealing with imaginary motor movements, Ma et al. 

(2021) utilized a residual neural network (ResNet) to achieve an accuracy of 98.6%.

Discussion 
Various artificial intelligence methods, particularly machine learning techniques for 

analyzing hemodynamic data obtained by NIRS, are discussed in the review. The analysis 

of scientific research literature revealed the advantages and disadvantages of most 

commonly used methods for preprocessing the raw signal before applying them to 

specific neural network models. Thus, the discrete probability distribution of concentration 

changes of oxy- and deoxyhemoglobin and the extraction of statistical features are often 

used in the preprocessing of neurocognitive data in applying random forests and support 

vector machines. Whereas constructing spatial maps or original time series allow deep 

learning neural networks to independently extract features from the input signal. In general, 

artificial intelligence algorithms require denoised data to function effectively. studies have 

shown that arbitrary feature extraction and artifact removal can cause problems in real-

time signal processing and subsequent use in brain-computer interfaces. However, deep 

learning neural networks can efficiently handle this task with a sufficient training dataset. 

Deep learning neural networks are employed both as independent classifier models and 

as feature extraction methods that are subsequently used in any classifier model. This 

approach is highly promising and continues to evolve actively. Despite modern AI methods, 

such as deep learning neural networks, being capable of summarizing and interpreting the 

original "raw" data, the data preprocessing step remains crucial and mandatory, especially 

with small samples of neurocognitive data.  

An important challenge in the application of deep learning neural networks is the 

requirement for large datasets, while research on neurocognitive mechanisms typically 
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involves small sample sizes. A potential solution to this challenge currently is generating 

artificial fNIRS data from existing small sets of registered data using generative adversarial 

neural networks (GAN).

The most common methods for analyzing preprocessed and denoised fNIRS data 

include convolutional neural networks (CNN) and recurrent neural networks (RNN), 

particularly with LSTM (long short-term memory) architecture. The review indicated that 

applying these deep learning neural networks reduces the number of signal preprocessing 

stages while achieving high classification accuracy.

Therefore, the primary applications of artificial intelligence methods (Orrù et al., 2020), 

particularly those based on deep learning, for processing and analyzing neurocognitive 

data are:    

(1) feature extraction or data augmentation (Gao et al., 2022; Lu, et al., 2020; Yücel 

et al., 2021);

(2) signal classification in brain-computer interfaces (Dolmans, Poel, van’t Klooster & 

Veldkamp, 2021; Glorot, Bordes & Bengio, 2011; Dargazany, Abtahi & Mankodiya, 

2019; Saadati, Nelson & Ayaz, 2019);

(3) analysis of neurocognitive mechanisms (Tanveer et al., 2019; Gao et al., 2020; 

Ma et al., 2020; Wang et al., 2021; Sirpal et al., 2019; Xu et al., 2019; Yang et al., 

2020; Ortega & Faisal, 2021; Ghonchi et al., 2020b; Chiarelli et al., 2018; Sun et al., 

2020; Cooney, Folli & Coyle, 2021).

Conclusion

The key findings of the theoretical review on using machine learning technologies for 

processing and analyzing neurophysiological data are:

• the hierarchical structure of deep learning neural networks allows for the 

potential learning of features directly from raw or minimally preprocessed data, 

thereby diminishing the necessity for multi-stage processing and feature extraction 

pipelines when analyzing fNIRS data;

• features derived through deep learning neural networks more precisely capture 

task-induced neural activation in the brain compared to those manually extracted 

using traditional methods;

• deep learning methods exhibit superior performance levels in analyzing fNIRS data.
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