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Abstract
Introduction. This scientific review aims to understand the etiology of human spatial abilities. Spatial 
thinking is a complex combination of cognitive abilities related to recognizing, transforming, and 
storing information about objects and predicting the transformation of interactions among them 
under the influence of other factors. In this work we tend to provide the most complete descrip-
tion of spatial abilities as a specific type of mental activity that underlies practical and theoretical 
problem-solving in the framework of psychology and genetics to emphasize the importance of 
synthesizing the experimental data and psychological foundations of spatial intelligence.
Theoretical Basis. This review presents the results of genetically informative studies of human spatial 
abilities. Since the ability to orientate in space is an integral characteristic of all living organisms, 
spatial abilities are of evolutionary and adaptive importance. In cognitive psychology, spatial 
skills are understood as the ability to operate with mental spatial images, schemes, and models 
of reality. Moreover, these abilities vary widely among individuals. The analysis of the etiology of 
these individual differences showed a significant contribution (69 %) of hereditary factors in the 
formation of spatial abilities. The results of twin studies indicate the need for searching specific 
polymorphic variants in genes involved in the development of spatial skills. Large-scale longitudinal 
studies have shown that spatial abilities are a reliable predictor of individuals’ achievements in 
science, technology, engineering, and mathematics (STEM). Therefore, studying their molecular-
genetic mechanisms merits special attention.
Results and Discussion. Various experimental studies on the psychogenetics of human spatial 
abilities first reported very interesting findings confirming their hereditary nature. Thus, spatial in-
telligence is a moderately heritable trait, which development involves a wide range of genetic 
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factors causing the activation of various signaling pathways of the metabolism of the human 
organism.

Keywords
intelligence, spatial abilities, behavioral genetics, cognitive traits, gene, polymorphic variant, 
individual differences, predictor, correlation, heritability

Highlights
➢ Spatial abilities represent a complex combination of cognitive components that ensure the 
integrity of the intellectual development of an individual.
➢ Spatial abilities are of evolutionary and adaptive importance for all individuals, as they provide 
a more productive interaction with the environment.
➢ Spatial intelligence is a moderately heritable cognitive trait (30–50 %). Various genetic factors 
contribute to 69 % of individual differences in spatial abilities.
➢ Spatial thinking is an effective predictor of individuals’ academic success in advanced scientific 
areas – STEM disciplines (Science, Technology, Engineering, and Mathematics).
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Introduction
Large-scale longitudinal studies involving both normative and gifted samples have shown 

that spatial ability is a reliable predictor of success in STEM disciplines (Super & Bachrach, 1957; 
Shea, Lubinski, & Benbow, 2001; Webb, Lubinski, & Benbow, 2007; Wai, Lubinski, & Benbow, 
2009; Lubinski, 2016). It is not surprising that the study of these abilities has recently gained 
considerable attention of researchers in the field of cognitive psychology. Spatial abilities are of 
evolutionary and adaptive importance because any living organism must be able to navigate in 
its surrounding environment to survive (Newcombe & Frick, 2010).

Spatial abilities represent a combination of several cognitive components, including spatial 
visualization (complex multi-stage manipulations of spatial information), mental rotation (mentally 
rotating spatial forms), spatial relationships (perception of relationships among objects), clos-
ing speed (understanding a spatial form in the presence of distracting content, e.g., integration 
of visual stimuli into a meaningful whole), flexibility of closure (search for a visual field to find 
a specific spatial form), and also spatial scanning, motion detection, mechanical reasoning, length 
estimation, directional thinking, spatial memory, etc. (Carroll, 1993; Colom, Contreras, Shih, & 
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Santacreu, 2003; Uttal, Miller, & Newcombe, 2013; Weisberg, Schinazi, Newcombe, Shipley, & 
Epstein, 2014; Rimfeld et al., 2017).

In cognitive psychology, spatial intelligence is regarded as an important characteristic of the 
general intellectual development of an individual. Linear theories of multiple intelligences and 
their structural-hierarchical models pay special attention to the phenomenon of human spatial 
thinking (Ananyev & Rybalko, 1964).

Several studies have analyzed the impact of spatial abilities on individuals’ mathematical 
skills (Snow, 1999; Stanley, 2000; Colangelo, Assouline, & Gross, 2004). Currently, global cognitive 
psychology recognizes the critical role of the development of spatial thinking as a predictor of an 
individual’s academic success in advanced scientific areas – STEM disciplines (Science, Technology, 
Engineering, and Mathematics) (Lobanov, Radchikova, & Semenova, 2013; Wai et al., 2009; Khine, 
2017). Results from large-scale studies of spatial abilities demonstrate that they play a key role 
in structuring educational and professional outcomes among both the general population and 
talented individuals (Shea et al., 2001; Webb et al., 2007; Wai et al., 2009).

Russian studies also recognize the role of spatial abilities in cognitive development of a child. 
Thus, it is noted that insufficient degree of spatial orientation affects school performance of 
students (Semago & Semago, 2005). Subsequent studies on the ability of students to operate 
with mental images showed that adolescence is a sensitive period for the development of spatial 
intelligence (Panfilov & Panfilova, 2015).

The results of the studies carried out by I. S. Yakimanskaya also provide evidence for the role 
of spatial intelligence in determining the success of academic training in natural sciences and 
mathematics, associated with graphic arts and engineering design activities (Yakimanskaya, 2008).

Theoretical Basis
The role of hereditary factors in the development of spatial abilities
The cognitive abilities vary in the degree of expression in the population. Despite the high 

heritability of these traits (30–80 %), the involvement of genetic factors in cognitive functioning 
remains poorly understood (Kovas, Haworth, Dale, & Plomin, 2007; Lee, Henry, Trollor, & Sachdev, 
2010; Deary, 2012; Malykh et al., 2019). Perhaps the insufficient information content of the research 
data is explained by the fact that a high percentage of the contribution of hereditary factors to 
the development of traits is provided through a cumulative genetic effect. This makes it very dif-
ficult to obtain a more detailed picture of the processes of heritability of intellectual abilities. The 
discovery of the genes involved in the formation of a particular cognitive function is of particular 
interest (Deary, Johnson, & Houlihan, 2009; Knowles et al., 2014; Knowles, Viar-Paxton, Riemann, 
Jacobi, & Olatunji, 2016). Therefore, the identification of genetic markers associated with human 
mental health in combination with psychological aspects is one of the primary objectives of the 
interdisciplinary academic field – psychogenetics.

Today, there are only few genetically informative studies of human spatial abilities, which 
increases the degree of their relevance for researchers. The genetically informative studies of 
spatial abilities by using various diagnostic techniques, have shown that spatial intelligence is 
moderately heritable (30–50 %) (Kan, Wicherts, Dolan, & van der Maas, 2013; Knopik, Neiderhiser, 
De Fries, & Plomin, 2017).

Similar results were obtained in a large-scale twin study of spatial abilities (Shakeshaft et al., 
2016; Rimfeld et al., 2017). The results of analysis showed that genetic factors explain 69 % of 
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individual differences in spatial abilities (Rimfeld et al., 2017). These same genetic factors partially 
coincide with genetic factors involved in the formation of individual differences in general intel-
ligence (Rimfeld et al., 2017).

Another study showed that the presence of a moderate correlation between mathematical 
and spatial abilities is largely determined by the contribution of heredity. However, we should 
note that the analysis was carried out using a relatively small sample size (n = 278 pairs of twins) 
with a wide age range (6–12 years), which somewhat reduces its statistical power (Thompson, 
Detterman, & Plomin, 1991). Nevertheless, the stated hypothesis was confirmed in other works. 
Thus, the study of spatial skills in their correlation with mathematical abilities on the sample of 
4174 pairs of 12-year-old twins showed that genetic factors explained ~60 % of the observed 
correlations between spatial and mathematical abilities, while a significant part of these correla-
tions was characterized by environmental influences (Tosto et al., 2014). The results of another 
experimental study (involving 1250 pairs of twins and 413 twins without pairs at the age of 20) 
assessing spatial intelligence also demonstrated a significant contribution of hereditary fac-
tors (~56 %) to individual differences (Shakeshaft et al., 2016).

In addition, according to the literature, there is evidence of a partial genetic correlation between 
spatial abilities and general intelligence (“g”) (Robinson et al., 2015). As a rule, general intelli-
gence (“g”) accounts for more than half of individual differences in cognitive abilities. However, 
there are also domain-specific areas responsible for the manifestation of various types of intel-
lectual traits (Plomin & Spinath, 2002). This view is largely consistent with findings from cognitive 
neuroscience, which suggest that certain domains are associated with relatively different brain 
circuits (Lenartowicz, Kalar, Congdon, & Poldrack, 2010). The identification of genes involved in 
specific cognitive domains may be more effective than the search for genetic markers associated 
with the development of general intelligence, especially since the specifically focused approach 
is, in fact, multivariate and statistically more powerful than one-dimensional analysis of general 
neuropsychological tasks (Bearden & Freimer, 2006; van der Sluis, Verhage, Posthuma, & Dolan, 
2010).

Thus, the results of twin studies offer a challenge for finding specific polymorphic variants in 
genes involved in the development of spatial abilities.

Results and Discussion
Molecular-genetic aspects of the mechanism of the development of human spatial abilities
The first results of molecular-genetic studies on spatial thinking were obtained in research 

projects devoted to studying the morphology/physiology of the human nervous system. The de-
velopment of methods of biomedicine (GWAS – Genome-wide association studies), the analysis 
of transcryptome, exome, and proteome) has significantly improved the quality of analysis of 
endogenous correlates involved in the development and functioning of tissues and divisions of 
the central nervous system (CNS). These studies showed the impact of genetic factors on vari-
ous kinds of complex neurological diseases and psychiatric disorders (temporal lobe epilepsy, 
vascular dementia, Alzheimer’s disease, depressive pathologies, bipolar disorder, autism spectrum 
diseases, etc.) (Thompson et al., 2004; Kim et al., 2015; Hibar et al., 2016). However, along with 
work on the pathophysiology/pathogenetics of the central nervous system, research groups are 
currently interested in the study of normal brain functioning.
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Thus, several studies noted that the formation of the hippocampus, optimal synaptic plasticity 
in the cells of the cerebral cortex play an important role in the development and formation of 
spatial intelligence. The hippocampus is a part of the limbic system of the brain and hippocampal 
formation, involved in the development of mechanisms for memory consolidation, spatial navi-
gation, and the manifestation of emotions. The navigation in the environment can be achieved 
by using either of two systems of memory, each with a different strategy (Hartley & Burgess, 
2005). The ‘spatial’ strategy involves the establishment of associations among guiding lines in 
the environment to develop a cognitive map and is associated with increased gray matter and 
activity in the hippocampus. The ‘response’ strategy involves the analysis of stimulus-response 
relationships such as a series of turns from certain points in space. The response strategy is as-
sociated with increased gray matter levels and increased brain activity in the caudate nucleus of 
the striatum (Iaria, Petrides, Dagher, Pike, & Bohbot, 2003; Bohbot, Lerch, Thorndycraft, Iaria, & 
Zijdenbos, 2007). The studies showed that humans spontaneously use one of these two alter-
native navigation strategies with almost equal frequency to solve a navigation task. This choice 
correlates with activity of functional magnetic resonance imaging (fMRI) and density of gray 
matter (Banner, Bhat, Etchamendy, Joober, & Bohbot, 2011).

The study of structural changes of the gene of brain-derived neurotrophic factor (BDNF) has 
also demonstrated the importance of the hippocampal system in the formation of human spa-
tial intelligence. The polymorphic variant rs6265 (c.196G>A), which leads to the replacement of 
valine (Val) by methionine (Met) at codon 66 of the BDNF gene, causes a decrease in the level 
of secretion of the brain-derived neurotrophic factor involved in the survival and differentiation 
of nerve cells during their development (Bath & Lee, 2006). Subsequently, the low expression of 
BDNF protein can lead to the impairment of hippocampal-dependent cognitive functions, such 
as episodic and spatial memory and recognition. Individuals with one or two copies of the allele 
of Met have a decrease in fMRI of the hippocampus and gray matter, compared to individuals 
homozygous for Val (Hariri et al., 2003; Bueller et al., 2006). In addition, as discovered in further 
analysis by Banner et al., the polymorphic variant rs6265 is associated with the choice of the 
spontaneous navigation strategy by an individual. Thus, Met carriers showed a reduced likelihood 
of using the hippocampus-dependent spatial strategy. The obtained data enable us to conclude 
that the BDNF gene can be considered as a candidate gene involved in the spontaneous strategy 
of navigation choice (Banner et al., 2011).

A subsequent study of genetic determinants and products that provide normal synaptic plastic-
ity of cells of the limbic system of the brain and its basal nuclei of the hemispheres, coupled with 
the study of the above navigation paradigm of virtual reality in groups of young/elderly people, 
showed the presence of an association of the polymorphic variant rs17070145 (c.1185-3222C>T) 
of the KIBRA gene with the degree of manifestation of spatial thinking in individuals, depending 
on age differences (Schuck et al., 2013; Piras et al., 2017). We should note that Piras et al. (2017) 
also analyzed the association of the polymorphic variant rs17070145 of KIBRA with both an im-
provement in episodic memory in the elderly and a reduced risk of late-onset Alzheimer’s disease. 
However, the mechanism of this protective effect is still not fully understood.

The study by Mueller et al. (2014) demonstrates the involvement of the gene of monoamine 
oxidase A (MAOA) localized at X chromosome in the development of spatial skills. The MAOA 
gene have a repeat of 30 bp in the promoter region (MAOA-LPR), which affected efficiency of 
transcription in vitro. Individuals with long alleles (3.5 repeats and 4 repeats) demonstrated 
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greater transcriptional activity than carriers of short alleles (3 repeats) (Sabol, Hu, & Hamer, 
1998). According to the literature, the differences in the variable of number of tandem repeats of 
the MAOA gene are associated with the development of a variety of mental disorders, including 
anxiety, depression, and schizophrenia, due to cognitive impairments such as spatial learning and 
memory dysfunction (Dannlowski et al., 2009; Mueller et al., 2009). Neurobiological studies also 
support the involvement of MAOA protein in the normal functioning of spatial intelligence, but 
mainly by measuring the levels of MAOA enzyme activity in mice (Steckler et al., 2001).

A study carried out by S. C. Mueller and colleagues to assess the levels of transcription of the 
MAOA gene in the formation of spatial thinking in 69 adolescents, preferably males, showed that 
high activity of the enzyme monoamine oxidase A contributes to more effective spatial learning 
and better memory of an individual. It is noteworthy that after the identification of the gene 
of brain-derived neurotrophic factor (BDNF) as a possible marker of normal development and 
functioning of episodic memory and spatial navigation, the obtained data on the MAOA gene 
significantly expand the understanding of the mechanisms of deamination of neurotransmitters 
involved in the activity in the prefrontal cortex, such as dopamine, serotonin, and norepineph-
rine. Perhaps, BDNF can modulate spatial navigation through the hippocampus, whereas MAOA 
can modulate spatial navigation at the prefrontal level (Spiers, 2008). Presumably, the level of 
production of MAOA protein may indirectly influence spatial cognition by affecting the function 
of catecholamines in the prefrontal cortex/striatum. The higher transcription of the highly active 
MAOA gene in men provides greater production of the enzyme, followed by increased deamina-
tion of catecholamines and, in turn, faster clearance of neurotransmitters, which provides a faster 
turnover of available monoamines. This is consistent with the idea that individuals with a low-
activity variant may have higher level of homovanillic acid, the main metabolite of catecholamines 
in the CNS, but exhibit poorer performance on executive tasks (Ducci et al., 2006). However, 
these results should be clarified at the behavioral level, given the conflicting evidence that in-
dividuals with the low level of expression of MAOA make better financial decisions and achieve 
higher educational attainment at a similar IQ and given the small sample size of respondents as 
well (Mueller et al., 2014).

In addition to the involvement of the limbic system of the brain, the functioning of spatial 
thinking, as it turned out, involves the parahippocampal regions, the transverse occipital sulcus, 
and the retrosplenial cortex (RSC) localized in the parietal-occipital sulcus, which cells process 
and store information about objects (Maguire, 2001; Grill-Spector, 2003; Dilks, Julian, Paunov, & 
Kanwisher, 2013). Neuroimaging studies showed that these areas of the brain respond more 
strongly when viewing navigation-relevant ‘events’ compared to responses to stimuli that are 
not related to navigation (e.g., objects), and play a key role in the development of human spatial 
skills (Aguirre, Zarahn, & D’Esposito, 1998; Epstein & Kanwisher, 1998; Nakamura et al., 2000; 
Hasson, Harel, Levy, & Malach, 2003; Epstein, 2008). The electrophysiological studies in vivo in 
the rats prove this fact, demonstrating that spatial learning enhances stimulation of the RSC 
cells (Smith, Barredo, & Mizumori, 2012). The study of architectonics of the retrosplenial cortex 
in vivo in mice by using two-photon imaging showed that spatial navigation in objects is largely 
determined by the optimal level of the expression of the c-Fos gene, mediated by the activation 
of the factor of CREB transcription (cAMP-responsive element-binding protein) (Czajkowski et al., 
2014). The nature of this transcriptional response depends on the type and strength of stimula-
tion of the nerve cells. The CREB-dependent expression of genes has been previously shown to 
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be involved in many different aspects of nervous system function, from embryonic development 
to neuronal survival, as well as synaptic, structural, and intrinsic plasticity (Barco & Marie, 2011; 
Barry & Commins, 2011).

The genetic factor c-Fos itself is a member of the Fos family (leucine zipper proteins, regu-
lators of cell proliferation, differentiation, and transformation), belonging to the vast group of 
early response genes (Immediate Early Genes, IEG), which also includes the Zif268 and Arc genes. 
All these immediate early response genes act as markers of the consolidation of the mechanisms of 
neural activity during the restoration of spatial memory. The consolidation of systems is a process 
involving the stabilization of memory traces in the neocortex over time. The medial prefrontal 
cortex becomes increasingly important over time in retrieving old memories, but the timing of 
its involvement is unclear, and little attention has been paid to the contribution of other areas 
of the neocortal brain to distant memory. Studies of the levels of Zif268, Arc, and c-Fos tran-
scripts in the hippocampus, medial prefrontal and entorhinal, perirenal, retrosplenial and parietal 
cortex of the brain of Wistar rats during navigation in the Morris water maze showed that the 
systemic interaction of all the above factors provides normal cognitive function in animals (Barry, 
Coogan, & Commins, 2016).

Several studies assessing the expression of levels of Fos proteins in neurons demonstrate their 
interaction with SATB2 protein. SATB2 is a highly conserved nuclear protein that is expressed in 
embryonic brain cells – namely, in the superficial cortical layers – and determines the identity 
of the corpus callosum and subcortical projection neurons (FitzPatrick et al., 2003). During the 
ontogenesis of the CNS, the expression of SATB2 protein shifts towards the deep cortical layers, 
and, ultimately, the most significant levels of SATB2 production in the adult brain are observed 
in the pyramidal cells of the brain and in the CA1 region of the hippocampus, which indicates 
its involvement in cognition (Huang et al., 2013). Patients with defects in the gene SATB2 usually 
suffer from moderate to severe mental retardation, but the mechanism of intellectual disability 
in individuals remains understudied. However, in the study by Li et al. with the use of model 
animals showed that in heterozygous mice and mice with SATB2 conditional KO (SATB2 cKO) 
spatial and working memory were considerably disrupted. The low expression of immediate early 
genes (IEG), including Fos, FosB, and Egr1, was also noted, especially in animals with a deleted 
gene. In addition, it was found that the product of the SATB2 gene can regulate the expression 
of FosB protein by directly binding to its promoter. Thus, we may conclude that SATB2 plays an 
important role in the development of spatial/working memory mechanisms, regulating the indirect 
activation of IEG and synaptic plasticity of the hippocampus (Li et al., 2017; Cera et al., 2019).

Other experimental studies on the analysis of spatial navigation in animals described the im-
portance of polymorphic variants of the S100B gene located on chromosome 21 and encoding 
a protein of member family of the S100 Ca2+ – binding signal proteins which are actively produced 
in cells of the immune system, astrocytes, Schwann cells, melanocytes, chondrocytes, and adipo-
cytes (Donato et al., 2009; Donato et al., 2013). It was noted that increased levels of expression 
of S100B in mouse cells contributed to the deterioration of the mechanisms of orientation in 
rodents and their behavior in general, by reducing post-tetanic excitatory postsynaptic potentials 
in the hippocampus and impairing spatial learning. This may be explained by the fact that S100B 
protein secreted by astrocytes has different (trophic, toxic) effects on neurons and microglia, 
which depends on the level of production (Van Eldik & Wainwright, 2003; Donato et al., 2009; 
Sorci et al., 2010). Moreover, several studies emphasize that transgenic mice at S100B exhibit an 
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increased susceptibility to perinatal hypoxia-ischemia, and overexpression of S100B accelerates 
pathology similar to Alzheimer’s disease, with increased astrogliosis and microgliosis (Wainwright 
et al., 2004; Mori et al., 2010). In contrast, S100B knockout mice show enhanced spatial skills, fear 
stimulus memorization, and increased long-term potentiation in the CA1 region of the hippocam-
pus (Nishiyama, Knöpfel, Endo, & Itohara, 2002). This indicates that the extracellular expression 
of S100B protein may be a regulator of synaptic plasticity, although the mechanism underlying 
this activity is not yet clear (Donato et al., 2013).

Subsequent molecular-genetic analysis of S100B gene in a cohort of respondents from China 
and an assessment of the levels of expression of its product in human post-mortal brain tissue 
showed an association of polymorphic variants rs3788266 and rs11542311 with the develop-
ment of spatial intelligence in an individual, and also indicated that the degree of production of 
S100B protein does not correlate only with pathological conditions of the brain, but also with 
its normal functioning in healthy individuals, ensuring the stability of neuronal plasticity and 
conduction (Epstein & Vass, 2014; Kong, Song, Zhen, & Liu, 2017). Previously, it was found that 
rs3788266 is a marker of the risk for bipolar affective disorder, and rs11542311 is a marker of the 
risk for schizophrenia (Liu et al., 2005; Roche et al., 2007). Additionally, it was noted that overex-
pression of S100B in blood serum negatively influenced the course of these types of neurological 
diseases (Andreazza et al., 2007; Schroeter & Steiner, 2009).

There is evidence that the product of the DCDC2 gene, a member of the doublecortin fa-
mily (DCX), can also be involved in the mechanism of the development of the spatial type of think-
ing (Wang et al., 2011). The DCX gene is required for normal neuronal migration in the cerebral 
cortex. To date, structural abnormalities in DCX have been found to cause abnormal neuronal 
migration, leading to the development of human pathologies – lissencephaly and double cortex 
syndrome (Gleeson, Lin, Flanagan, & Walsh, 1999). Regarding the impact of the product of the 
DCDC2 gene on the development of cognitive abilities, the functions of protein DCDC2 were first 
described in studies on dyslexia in children, a reading disorder characterized by retardation in 
academic performance and everyday life (American Psychiatric Association, 1999; Gabel, Gibson, 
Gruen, & LoTurco, 2010).

In the context of studying the etiology of speech retardation, several theories have been put 
forward considering the reasons for this defect, including impaired visual perception of objects, 
spatial orientation in the text among them, and attention mechanisms in general (Hari & Renvall, 
2001; Smith-Spark & Fisk, 2007; Ruffino et al., 2010; Vidyasagar & Pammer, 2010). Assessment 
of visual attention, visuospatial learning and memory in DCDC2 knock-out mice showed that 
deletion of the gene impairs the visual perception of an object and reduces task performance 
in visuospatial learning and memorization, while not affecting the learning ability of the animal. 
We should note that mice with genotypes dcdc2wt / del2, dcdc2del2 / del2 lost the ability to retain vi-
sual information for a long period of time, which considerably impaired the Hebb–Williams maze 
performance. The constant deficit in task performance (average speed and accuracy) made it 
possible to conclude that mice are not able to improve their performance over time due to the 
knockout of DCDC2 (Gabel et al., 2011).

Experimental studies on the genetics of human spatial skills have expanded the range of analysis 
of neurogenetic factors involved in the development of cognitive processes, and, as a result, iden-
tified several other organ systems. The cerebellum is known to control movement coordination, 
fine motor skills, and motor learning. However, there is growing evidence for its contribution to 
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cognitive and motivational processes in the central nervous system (Ito, 2006). Dysfunction of the 
cerebellum is associated not only with motor conditions, but also with disorders such as autism 
spectrum disorders, attention deficit hyperactivity disorder (ADHD), and the fragile X syndrome, 
phenotypes ranging from motor to higher brain functions (including cognitive processes and 
social behavior) (Rogers et al., 2013; Wang, Kloth, & Badura, 2014). In most studies the analysis 
of the malfunction of cerebellar cells and neural development focused on the Purkinje cells. 
However, in the present, the study of Golgi cells is currently of great interest, because inhibitory 
GABAergic/glyceric interneurons in the cerebellar cortex may mediate a number of signalings of 
granular cell with subsequent innervation of Purkinje fiber (Kalmbach, Voicu, Ohyama, & Mauk, 
2011; Rössert, Dean, & Porrill, 2015).

Tantra et al. (2018) suggested that the expression of the CDH13 gene in Golgi cells affects the 
motor/cognitive behavior of mice. The CDH13 gene (16q23.3) encodes atypical cadherin lacking 
transmembrane and cytoplasmic domains, attached to the cell membrane via a glycosylphos-
phatidylinositol anchor that regulates cell migration and neurite outgrowth (Ranscht & Dours-
Zimmermann, 1991). Many members of the cadherin superfamily are produced in the nervous 
system with various spatial and temporal expression patterns and are associated with neurological 
disorders. The results of GWAS, exome sequencing, indicate the presence of association of poly-
morphic variants of CDH13 with the development of ADHD, dependence on the use of psychotro-
pic drugs, depression, aggressive behavior, bipolar disorder, autism, and schizophrenia (Treutlein 
et al., 2009; Terracciano et al., 2010; Lionel et al., 2011; Sanders et al., 2015). In addition, a number 
of polymorphic variants of the CDH13 gene have shown associations with the cognitive skills – 
namely, with working memory in patients with ADHD (Arias-Vasquez et al., 2011). Both excitatory 
and inhibitory synaptic functions in the hippocampus depend on the expression of CDH13, and 
its complete deletion leads to impairments of spatial learning and conditional place preference. 
In addition to synaptic formation, CDH13 controls neuronal migration and axon specificity target-
ing the developing cortex of the brain and spinal cord (Redies, Hertel, & Hübner, 2012; Rivero et 
al., 2015). Tantra et al. found that mice with deleted of the CDH13 gene show reduced cognitive 
flexibility and loss of preference for contacts, which is accompanied by increased reciprocal social 
interactions. At the behavioral level, the loss of function of CDH13 in the cerebellum, piriform 
cortex, and endopyriform claustrum does not affect overall locomotor coordination, but leads to 
a deficit in the animal’s cognitive and social abilities (Tantra et al., 2018).

Subsequent literature data also demonstrate an important role of the gene of cadherin 13 in 
the regulation of social behavior, learning mechanisms, and visual-spatial memory in animals. 
The obtained results are very useful, since they are of fundamental importance in the study of 
cognitive function in violation of the development of the nervous system (Forero et al., 2020).

Subsequently, the GWAS were carried out to identify genetic factors involved in the genesis 
of the human nervous system, optimal synaptic plasticity, survival, neuronal proliferation, which 
revealed several additional genes: CADM2; SLC4A10; DPP450; DPP4; AKAP6; APOE/TOMM40; NPAS3; 
FNBP1L involved in the development of intelligence (Thomas, Akins, & Biederer, 2008; Davies et 
al., 2011; Davies et al., 2015; Davies et al., 2016; Davies et al., 2018). It is noteworthy that certain 
of the above genetic factors are involved in the genesis of human spatial thinking (visualization 
of objects, analysis of relationship among them, etc.).

Thus, researchers have emphasized the impact of the polymorphic variant rs17518584 of 
the CADM2 gene on the speed of information processing in groups of individuals of various 
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ages (Ibrahim et al., 2018). The CADM2 gene encodes a protein of the SynCAM group, molecules 
of adhesion of synaptic cells, also known as nectin-like molecules (NECL) or molecules of cell adhe-
sion (CADM), which represent a subgroup of the immunoglobulin superfamily (IgSF-CAM) (Biederer 
et al., 2002). Publications devoted to the analysis of the functional activity of the CADM2 gene 
demonstrate that its polymorphic variants and mutations are associated with the formation of 
human intellectual and behavioral traits, development of metabolic mechanisms, physical activity, 
obesity, the level of the consumption of alcohol and cannabinoid derivatives (Davies et al., 2016; 
Amare, Schubert, Klingler-Hoffmann, Cohen-Woods, & Baune, 2017; Clarke et al., 2017; Ouakinin, 
Barreira, & Gois, 2018). In particular, CADM2-knockout mice have a reduced degree of obesity, 
significantly low systemic glucose levels, hypersensitivity to insulin, and increased motor activity, 
which indicates an important role of CADM2 protein in the energy homeostasis (Yan et al., 2018). 
The analysis of endogenous factors involved in the development of physical activity in a group 
of subjects from the United States aged 45–64 years showed the presence of associations of 
polymorphic variants of CADM2 with this trait (Klimentidis et al., 2018).

In addition, as previously reported, molecules of cell adhesion (CADM) are involved in the 
regulation of synaptic plasticity in relation to spatial learning of the object (Robbins et al., 2010). 
In psychogenetics, some works are mentioned that assess the levels of expression of the prod-
uct of the CADM2 gene in the onset and formation of attention deficit/hyperactivity disorder 
and various types of mental disorders (neuroticism, bipolar disorder, mood instability, depres-
sion, and risky behavior) in correlation with metabolic syndrome, due to the use of psychotropic 
drugs (Morris et al., 2019).

The functional importance of the region of APOE/TOMM40 genes in cognitive genomics was 
originally studied in patients with Alzheimer’s disease. Later, it was shown that the region of 
APOE/TOMM40 is closely associated with general cognitive function in middle-aged and elderly 
people (Davies et al., 2015). It is well known that apolipoprotein E is a genetic marker for sporadic 
forms of late-onset Alzheimer’s disease. The type of the inherited allele may determine the time 
of disease onset, the severity of its course, and the degree of decline in cognitive function (Caselli 
et al., 2009). Recent studies have shown that the poly-T of polymorphic variant rs10524523 (‘523’) 
of the TOMM40 gene can accelerate the course of Alzheimer’s pathology. A functional analysis 
of the genetic factors APOE and TOMM40 showed that multiple cis-regulatory elements of APOE 
affect the activity of both the promoter of apolipoprotein E itself and translocase 40. The study of 
rs10524523 in individuals with homozygous apolipoprotein E genotype ε3/ε3 with amnestic mild 
cognitive impairments, which are considered the most common and ‘neutral’ in relation to the 
progression of the disease, showed the presence of an association of ‘523’ with a deterioration in 
allocentric spatial navigation and a decrease in cortical thickness in certain brain areas in elderly 
subjects (Laczó et al., 2015). The data of brain pathology of individuals with APOE ε3/ε3 indicate 
that ‘523’ long allele (poly-T repeats ≥ 20) may increase the burden of disease (Yu et al., 2017).

Luoma & Berry (2018) presented interesting data on the analysis of the function of NPAS3 (Neuronal 
PAS (period-ARNT-single minded) domain containing 3) in model animals. The authors have dem-
onstrated that the loss of the function of this gene in the cells of mice leads to a change in 
behavioral responses due to dysfunction of the hippocampus and a deterioration in task perfor-
mance. It was previously established that NPAS3 encodes a transcription factor, which is mainly 
involved in the regulation of the mechanisms of ontogenesis of the nervous system, since it 
activates the processes of cell proliferation and apoptosis (Kamnasaran, Muir, Ferguson-Smith, & 



Takhirova, Kazantseva, Enikeeva, … Malykh
Psychogenetics of Human Spatial Abilities
Russian Psychological Journal, 2021, Vol. 18, No. 2, 67–93. doi: 10.21702/rpj.2021.2.5

CC BY 4.0                                                                                                                       77

PSYCHOPHYSIOLOGY

Cox, 2003; Pickard, Malloy, Porteous, Blackwood, & Muir, 2005). Interestingly, NPAS3 has been 
originally identified as a candidate gene in patients with bipolar disorder and schizophrenia from 
Scotland (Piccione et al., 2012; Erbel-Sieler et al., 2004).

Several experimental studies demonstrate the involvement of nicotinamide mononucleotide 
adenylyltransferase 2 (NMNAT2) in the mechanisms of the development of intelligence and spa-
tial abilities in human. The NMNAT2 is a key factor in maintaining stability and neuronal activity 
and in protecting the nervous system from stressful influences, which has been demonstrated in 
numerous preclinical models of neurological disorders. NMNAT2 protein itself is a member of the 
family of enzymes of nicotinamide mononucleotide adenylyltransferases (NMNAT), which synthe-
size nicotinamideadeninedinucleotide (NAD), an important cofactor of many cellular processes, 
as well as acting as chaperones (D’Angelo et al., 2000; Ali, Li-Kroeger, Bellen, Zhai, & Lu, 2013). 
Thus, it was found that in humans the levels of the transcript of NMNAT2 positively correlate 
with the cognitive function of the brain, while low expression of nicotinamide mononucleotide 
adenylyltransferase 2 is noted in Alzheimer’s, Huntington’s, and Parkinson’s diseases (Lin & 
Koleske, 2010; Ali et al., 2016).

In pharmacogenetics, several studies examine the stabilization of multiple clusters of cell 
signalings with the participation of the gene of nicotinamide mononucleotide adenylyltransfer-
ase 2 (NMNAT2) with using chemical modulators at certain concentrations (ziprasidone, can-
tharidin, wortmannin, retinoic acid, and caffeine), which have different effects on the viability 
of the cortical layers of the brain in a mouse model of tauopathy. These associations suggest 
that the levels of NMNAT2 protein can be regulated by an increase in cAMP or by a mechanism 
of excitatory neurotransmission. As a result, caffeine compounds had a beneficial effect on the 
production of NMNAT2 enzyme. Here with, systemic injection of caffeine restored expression of 
NMNAT2 to control levels in a mouse model of tauopaty (Ali, Bradley, & Lu, 2017). Previously, 
Laurent et al. (2014) showed that chronic caffeine treatment in a mouse model of tauopaty reduces 
hyperphosphorylation of Tau protein (Tubulin binding protein) and improves memory function. 
While ziprasidone, cantharidin, wortmannin, and retinoic acid reduce the synaptic conductivity of 
neurons by decreasing their survival. Interestingly, the use of these negative modulators in therapy 
with vincristine further reduces nerve cell viability by dramatically decreasing the expression of 
NMNAT2 (Ali et al., 2017). These experimental studies have prognostic value in health care, as 
they make it possible to assess the therapeutic effect of various chemicals on cognitive skills in 
defects in the functioning of the nervous system and to consider them in health and disease.

An associative study assessing psychiatric and cognitive characteristics associated with a heredi-
tary component carried out by Bi et al. (2017) demonstrated the association of the polymorphic 
variant rs10494561 of NMNAT2 with manifestations of the severity of an individual’s professional 
functioning as a prodrome of psychosis. The same work also assessed the association of genetic 
factor IFT122, encodes intraflagellar transport 122 protein which is important for the formation 
of a neuronal pattern, with spatial abilities. Namely, the association of the polymorphic variant 
rs2285351 of IFT122 with the formation of such a cognitive skill as orientation in space. Interestingly, 
structural impairments in the IFT122 gene contribute to the emergence of a rare hereditary 
disease – cranioectodermal dysplasia (Walczak-Sztulpa et al., 2010; Bi et al., 2017). The GWAS 
analysis of cognitive functions in 7600 middle-aged and elderly Hispanic Americans (≥ 45 years) 
similarly confirmed the possible involvement of protein IFT122 in the normal function of cogni-
tion (Jian et al., 2020).
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The identification of genetic determinants associated with the development of intellectual 
and spatial abilities made it possible to discover other possible participants in the cognition 
process: SIRT1, CNTNAP2, FOXP2, ZNF711, KIAA0319, and DYX1C1. All the above genetic factors 
are involved in the mechanisms of nerve cell migration, ensuring the growth of axons and neu-
rites (Michán et al., 2010; Mascheretti et al., 2017; van der Werf et al., 2017). Animal studies have 
shown that RNA-interference of the expression of patterns of these genes in utero is associated 
with deficits in spatial memory, learning ability, impaired visual discrimination, visual and auditory 
information processing, and long-term memory (Kurt, Fisher, & Ehret, 2012; Centanni et al., 2014; 
Rodenas-Cuadrado, Ho, & Vernes, 2014; Rendall, Tarkar, Contreras-Mora, LoTurco, & Fitch, 2017).

In neurogenetics, researchers pay attention to the change in the internal parameters of an in-
dividual depending on the lifestyle and nutrition. For example, Bahrami et al. assessed the impact 
of the dosage degree of vitamin D on intelligence in adolescents and investigated associations 
of polymorphic variant rs10766197 of the CYP2R1 gene with the effectiveness of high doses of 
vitamin D3. The authors note that the dosage of cholecalciferol improves cognitive skills and var-
ies greatly depending on the mental activity of the individual. The role of vitamin D derivatives, 
functional gene variants involved in signaling pathways of activation, has previously been charac-
terized in correlation with the development of neurodegenerative diseases (Bahrami et al., 2019). 
In addition to the results described above, studies of the effects of vitamin D on normal spatial 
function have been reported in the literature. For example, Taghizadeh, Talaei, & Salami (2013) 
noted that impaired vitamin D intake resulted in significantly lower spatial orientation of rats. 
Kueider et al. (2016) described the critical role of a decrease in vitamin D levels in elderly people 
with a high level of education in correlation with impaired speech and visual-spatial abilities, as 
well as psychomotor development.

We should emphasize that the study of the development of human spatial abilities in the frame-
work of psychogenetics seems to be one of the most interesting areas in experimental science 
today. It is well known that physiological capabilities and cognitive abilities are individual and not 
very predictable. This explains an increasing interest in the issues of their internal regulation, and 
individual spatial features are no exception. The search for candidate genes which products are 
involved in spatial intelligence, neuroimaging of the mechanisms of generation of this type of think-
ing in the nervous tissue, modeling the activation of endogenous factors in the cognitive function 
of space in animals, and analysis of the characteristics of the body metabolism associated with the 
manifestation of this type of mental activity contribute to the accumulation of useful knowledge 
about the formation and development of spatial skills, which makes it possible to more fully char-
acterize the very concept of ‘human spatial abilities’, to look at them from the inside, to provide 
a clear comprehensive description of the foundations for the development of these cognitive traits.

Conclusion
Spatial abilities play an important role in cognitive development and represent a reliable 

predictor of success in STEM disciplines. At the same time, genetic factors contribute to the 
formation of individual differences in spatial abilities. It is not surprising, since spatial abilities 
are of evolutionary and adaptive importance for living organisms, including humans. This review 
provides a brief description of the phenomenon of human spatial intelligence. The analysis of 
experimental studies indicates the important role of genetic factors in its development. Thus, 
we found that spatial skills are moderately inherited, and works on functional genetics describe 
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in more detail genetic determinants, which structural changes cause a variation in the level of 
generation of spatial thinking.

This obtained scientific groundwork can be used in fundamental research carried out in cog-
nitive psychology, neurogenetics, and evolutionary biology, and also as an applied component 
in the development of educational and training programs to improve and effectively use spatial 
skills by individuals of different ages in various spheres of life.
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